Statistical Learning with Sparsity
A Brief Introduction

Boen Jiang
Fudan University

November 11, 2024

1/57



N
Brief Histories: Robert Tibshirani

J. R. Statist. Soc. B (1996)
s8, No. 1, pp. 267-288

and Scecion i f Luso Rob Tibshirani

By ROBERT TIBSHIRANIt
University of Toronto, Canada

[T ———r— @ B. Math. in statistics and
We propose a new mehod for csimation i lincar model.JThe ‘laso’ minimizes the computer science from the

residual sum of squares subject to Uie SUfi O Uhe ABSOTALE Value of the coefficients being less
than s constant. Because of the mature of this comsraint it tends 10 produce.some

coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies U H H f W | H 9 9

e e 5 o e e S i o niversity of Waterloo in 1979.
dge regression. It produces interpretable models like subsct selection and exhibits the

stability of ridge regression. There is also an interesting relationship with recent work in

adaptive function estimation by Donoho and Johnstone. The lasso ids it al and 1 H H H
et v e o e ot e g @ Master's degree in Statistics
and tree-based models are briefly described.

Keywords: QUADRATIC PROGRAMMING; REGRESSION; SHRINKAGE; SUBSET SELECTION f rom t h e U n |V ers Ity of TO ron t 0
in 1980.

@ Received his Ph.D. in 1984
under the supervision of Bradley
Efron.

?Robert Tibshirani. “Regression
Shrinkage and Selection Via the Lasso”. en.
In: Journal of the Royal Statistical Society
Series B: Statistical Methodology 58.1 (Jan.
1996), pp. 267-288

2/57



Breif Histories: Leo Breiman

TECHNOMETRICS, NOVEMBER 1995, VOL. 37, NO. 4

Better Subset Regression Using the
Nonnegative Garrote

Leo Breman
Sm istics Department

of California,Borkeley
Garkeiey, CA 54720

A new method. called thd.
[ibe

s proposed for doing subse regrss

KEY WORDS: Lite boottrap: Mode eror; Predicton; Sabily

“Leo Breiman. “Better Subset
Regression Using the Nonnegative

Garrote”.
en. In: 37.4 (1995)

o Let {Bk} be the original OLS

estimates. Take {ck} to
minimize

> {ya— Y cBitun
k k
under the constraints

chgs.
k

Ck207

The gk(s) = ckBk are the new
predictor coefficients.

@ ‘“Lasso is a softer term for

Canadian than Garrote”.
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Brief Histories: Jerome Friedman
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be applied t

?Jerome Friedman et al. “Pathwise
coordinate optimization”. en. In: The
Annals of Applied Statistics 1.2 (Dec.
2007). arXiv:0708.1485 [stat]. ISSN:
1932-6157

@ In history, the coordinate

descent idea appeared in Fu
(1998), then in Daubechies et
al. (2004), but it was ignored
then. Later in 2007 it gained
popularity.

@ This work focused on linear

regression. Friedman and Hastie
focused the implementation of R
package glmnet.
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Interesting Connections

Ryan Tibshirani

Leo Breiman
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Linear Regression

Given:
N
o N samples {(xi,yi)}i_;,
® x; = (Xj1,...,Xjp) is a p-dimensional vector of predictors and each

yi € R is the associated response variable.
Linear Regression Model:

p
yi=Bo+ Y xiBj+ei
j=1
where

e 5= (po,P1,...,0p) are unknown parameters and e; are error terms.

Ordinary Least Squares for parameter

2
N P
minimize g yi— Bo — g Xij3;
B — —
i=1 j=1
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Trouble in High Dimensions

@ Least squares risk degrades as p — n:

lg [HXB - Xﬂa”2 ‘X] — 2P
n 2 n

@ When p > n, least squares has no unique solution:
. TN uT
3= (X x) X"Y+n, ne€ke(X)
where A is pseudo-inverse, ker(A) is the null space
e Coefficient interpretation impossible ~~ for any Bj > 0, exists BJ- <0

solution
e Sign consistency unattainable
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Remarks on Sparsity

“We are drowning in information and starving for knowledge.”
@ sparse statistical model is one in which only a relatively small number
of parameters (or predictors) play an important role

@ reasonable interpretation of the fitted model and computational
convenience

@ Use a procedure that does well in sparse problems, since no procedure
does well in dense problems.
The "“Bet on Sparsity” Principle

Use methods that perform well under sparsity, as no method performs well
in dense problems.
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An Example for lasso-regularized multinomial classifier

Ty
!

T LS — T

\fy e«‘”h\' o ¢ +\°°¢*‘ o ”&&1 « © o & %é\e\ ’ '?;

[E]: 15-class gene expression cancer data: estimated nonzero feature weights from
a lasso-regularized multinomial classifier. Shown are the 254 genes (out of 4718)
with at least one nonzero weight among the 15 classes. The genes (unlabelled)
run from top to bottom. Line segments pointing to the right indicate positive
weights, and to the left, negative weights. We see that only a handful of genes
are needed to characterize each class.

9/57



An example of the 2d fused lasso for image denoising

(1) Original (b) Noisy (¢) Denoised

[E]: We started with a toy signal, shown in (a). The colors green, blue, purple, red
in the image correspond to the numeric levels 1, 2, 3, 4, respectively. We then
added noise, shown in (b), interpolating between colors to display the intermediate
values. This is used as the data y in the 2d fused lasso problem. The solution (for
A =1 ) is shown in (c), and it is a fairly accurate reconstruction. The fused lasso
is effective here because the original image is piecewise constant. !

'Ryan J. Tibshirani and Jonathan Taylor. “The solution path of the generalized
lasso”. en. In: The Annals of Statistics 39.3 (June 2011)
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N
Lasso Estimator

Lasso for Linear Regression (optimization with ¢;-norm constraint)

Given a collection of N predictor-response pairs {(x;, y,-)},'il, the lasso
finds the solution § to the optimization problem

1 N p 2
miniﬁmize N Z yi— Bo — Z X,'J'Bj
i=1 =1

P
subject to Z 1B <t
=1

The constraint j'):l |Bj| < t can be written more compactly as the
¢1-norm constraint ||3||1 < t.

11/57



Remarks on Lasso Problem

o Typically, we first standardize the predictors X so that each column is
centered (%, SN xi= 0) and has unit variance ( SN, X5 = 1)

@ Without standardization, the lasso solutions would depend on the
units (e.g., feet versus meters) used to measure the predictors. On
the other hand, we typically would not standardize if the features
were measured in the same units.

@ For convenience, we also assume that the outcome values y; have
been centered, meaning that % Z,IL y¥i = 0. These centering
conditions are convenient, since they mean that we can omit the
intercept term [y in the lasso optimization.
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Lagrangian Formulation (Not Dual Form)

1
miniﬁmize {2/\/ ly — XBH%} subject to ||B]1 < t,

is equivalent to the Lagrangian form:
mimize { -y — X5)3 + 5]
minimize § —— —
BERP on'Y 2 L

for some A > 0. The two forms are equivalent in the sense that for a given
A, there exists a t with the same solution.

@ For each value of tin the range where the constraint ||3||; < tis
active, there is a corresponding value of A that yields the same
solution from the Lagrangian form.

o Conversely, the solution B\A to Lagrangian problem solves the bound
problem with t = Hﬁ)\H :
1
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Canonical Regularizers in Regression

@ /y pseudo-norm: subset selection

p

18llo =Y 1{8; # 0}

=1

e fails positive homogeneity
e not convex ~~ NP-hard

@ {1 norm: lasso

p
18l =18
=1

@ {9 norm: ridge
1/2

P
1Bl = | >_ 87
j=1
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Convex Optimization Conditions

Since lasso problem has a convex objective function, and a convex
constraint, the solution to the lasso problem is guaranteed to be a
global minimum. The lasso problem is a convex optimization problem.
the ¢1-norm g(B) = Zj'):1 |Bj| is a convex function, but it fails to be
differentiable at any point where at least one coordinate f3; is equal to
zero ~» subgradient.

a vector z € RP is said to be a subgradient of fat 3 if

f(8) > AB)+ (z,p8 —B) forall 5/ €RP.

At points of nondifferentiability, the subdifferential is a convex set
containing all possible subgradients.

For absolute value function f{(3) = ||, we have

{+1} if >0
of8) = { {~1} if 8<0
[—1,+1] fB=0
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Subgradient

f(B)

F(B1) + 2a(B = BN

N // T (B) + 2B~ )
‘\\~ —‘Vfﬁif:;”"/“f(52)4*2b(5 — [2)

g2 %

[E]: A convex function f: R — R, along with some examples of subgradients at /3,
and (3. In geometric terms, the subgradient vector z is the normal to a
(nonvertical) hyperplane that supports the epigraph of .
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-
Generalized KKT's Stationary Condition

0 € of(B +ZA*agJ

Hence, a necessary condition for 5* to be a solution to the lasso problem

is that
1

N
Here each s; is an unknown quantity equal to sign (3;) if 5; # 0 and some
value lying in [—1, 1] otherwise — that is, it is a subgradient for the
absolute value function.

(x,y— XB)+Xs;=0,j=1,...,p
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Contour Plots: Lasso vs Ridge

contour plot
b-B)'X'X(p-p)=C

contour plot
b-3)'X"X(b-F3)=C

o

bt <t Bb<t |

~ ! ~. Vi

~ Y

L .
7 0 Vi \: i b
=0 ~ridge ~ridge
A B £0, 8, 0

Why are the plot like these?

(Y= Xb)" (Y= Xb) = (Y= XB)" (Y = XB) + (b— 5) " X" X(b - 5)
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-
Generalization — Overfitting Tradeoff

@ larger values of t free up more parameters and allow the model to
adapt more closely to the training data,

@ smaller values of t restrict the parameters more, leading to sparser,
more interpretable models that fit the data less closely.

@ A value of t that is too small can prevent the lasso from capturing the
main signal in the data, while too large a value can lead to overfitting.

@ ~~ K-fold cross-validation to select the best value of t.

@ K=15,10 in general. K can be N for leave-one-out
cross-validation(LOOCV).
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N
K-fold Cross-validation

@ Randomly divide the set of observations into K > 1 groups, or folds,
of approximately equal size.

Fix one fold as test set and remaining k — 1 folds as training sets.
Apply the lasso to the training data for a range of different t values.
Use each fitted model to predict the response in the test set.
Determine the mean-squared prediction errors for each value of t
Mean-squared error for test fold j :

>k = \F\Z(y’_ )

Repeat process k times such that each fold is once the test set.
Average k mean-squared errors for each value of t

k
1
t) = > MSE;
i=1

0000

0

“cross-validation error curve”.
20/57



-
Baseball Data Analysis
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L1 Norm L1 Norm

=|: we can see from the coefficient plot that depending on lambda, some of the
coefficients will be exactly equal to zero
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Baseball Data Analysis: Cross-validation
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Computing the lasso using commercial solvers

The lasso problem is a convex program, specifically a quadratic program
(QP) with a convex constraint. As such, there are many commercial
solvers for solving the lasso. For example, Gurobi, Mosek .

# €13 —-GurobitE A

model = gp.Model("11_regularization")
# GREE

. (1/2) * [|Az - b[[_272 + mu * [[z]]_1
— AR Sl 2/ [z)]_1
") # 2R TRT e/

z = model.addVars(n, name=
# e E A7 B %
model.setObjective(

(1/2) * gp.quicksun((gp.quicksun(Ali, j]1 * x[j] for j in range(n)) - b[il) ** 2 for i in range(m)) +

mu * gp.quicksum(z[j] for j in range(n)),

GRB.MINIMIZE

1% 2[5] >= alj] # 2[5] >= -zlj]
for j in range(n):
model.addConstr(z[j] >= x[j1)
model.addConstr(z[j] >= -x[j1)
# KA

model.optimize()
[&]: Gurobi is a commercial optimization solver that can be used to solve the lasso

problem. The above code snippet shows how to use Gurobi to solve the lasso

problem in Python. 23/57



Coordinate descent lemma

Let’s begin with toy case. Let sign(x) denote the sign of a real number x,
which equals 1,0, —1 if x> 0,x= 0, x < 0, respectively. Let

(x)+ = max(x,0) denote the positive part of a real number x.

By classification discussion given by and A > 0, we have

argmem (b bo) + Alb| = sign (ko) (|bo| — A) .

bo— X\, if by >\,

={0 if — A< by <A,
bo+ X\ if by < —A.
2 .8, (by).

Here the soft-thresholding operator
Sn(x) = sign(x) (X = \)+

translates its argument x toward zero by the amount A, and sets it to zero
if [x <A

24 /57



-
Soft Thresholding

JEBF.
1 1 1
5(.b — b)) + b = E.b2 + (]b| = bob) + Ebg
1 1
= Ebz + (Asign(b) — by)b + Ebg

. 1 1
18D > 0F4Y, Eil= b+ (1= bo)b + b5,

1. by 2 A = argmin = by — A;
2. bp £ A= argmin =0

Eb < 084y, E= %bz +(=A—-by)b + %bz,
1. by = —4 = argmin = 0;

2. bp £ —A = argmin = by + 4

25 /57



-
Soft Thresholding

rA=2
™ -
~ 4
<
£ °7
7]
(}.7
('?_
| \ \ T |
-4 -2 0 2 4
bo
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Computing the lasso via coordinate descent

@ The glmnet package in R uses the coordinate descent algorithm.

Coordinate descent vs proximal gradient for lasso regression: 100
random instances with n = 200, p = 50 (all methods cost O(np)
per iter)

Coordinate desc
—— Proximal grad
—  Accel prox

1e-01

1e-04

Suboptimality fk-fstar

1e-07

1e-10
L

T T T T 1
0 10 20 30 40 50 60

Iteration k

&: In Ryan Tibshirani's slides, the coordinate descent algorithm is outperforming.
Trever also compares (among others) his two R packages: glmnet (using
coordinate descent) and lars (using LARS). It's shown that coordinate descent is
faster in each setting: p > N,p < N and sparse or dense data.
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-
Coordinate Descent Algorithm

For a general case, write the Lagrangian form of the lasso problem as

2

2/\/ Z Yi— lekﬁk XIJBJ +A Z |/8k| +A ’/BJ‘
k#j k#j

Denote partial residual as
rj=yi— Y Bixi
k#j
Then we need to optimize

N

1
N D (g = Bpx)” + Ayl

i=1

28 /57



-
Coordinate Descent Algorithm

Run OLS of rjj on xj; to get the estimate Bj,()- Here,

5 o= > XUr’J _ -1 ZX -
) ijlij
Zl_l U(

By adding and substracting,

2NZ i = B) QNZ(r” @’OX'J) 21/\12,\/: 5 (9 Bﬁ)

i=1

RN
= constant + = (,BJ 51',0) .

Using the soft-thresholding operator, we have
Bj = Sy (5’1,0) -

29/57



Comments on Coordinate Descent Algorithm

The theory of Tseng (2001) ensures the convergence of the
algorithm 2

We can start with a large A and all zero coefficients.
We then gradually decrease A, for each A, we apply the algorithm.
We finally select A via K-fold CV.

Since we gradually decrease A, the initial values of from the last step
are very close to the minimizer and the algorithm converges fairly fast.

2P. Tseng. “Convergence of a Block Coordinate Descent Method for
Nondifferentiable Minimization”. en. In: Journal of Optimization Theory and

Applications 109.3 (June 2001), pp. 475-494. 1ssN: 1573-2878
30/57



Degree of Freedom

Suppose we have an additive-error model, with
yi= f(X,')-FG,‘,iZ 1,...,N,

for some unknown f and with the errors ¢; id (0, 02). If the N sample
predictions are denoted by y, then we define

N
~ 1 ~
df(y) = — > Cov (i, i) -
i=1

This is consistent with the degrees of freedom in the usual definition of the
t-statistic for a linear model.

The degrees of freedom corresponds to the total amount of self-influence
that each response measurement has on its prediction.
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-
LARS Algorithm

Algorithm 5.1 LEAST ANGLE REGRESSION.

1. Standardize the predictors to have mean zero and unit ¢ norm. Start with
the residual 7o =y — ¥, 8 = (81, B2, ..., 8p) = 0. set empty

2. Find the predictor x; most correlated with r¢; i.e., with largest value for
|(xj, 7o)|. Call this value A, define the active set A = {j}, and X 4, the_
matrix consisting of this single variabM@riable best correlated with the residual

3. For k=1,2,..., K = min(N - 1,p) dU?:Ii, active vars is not everything
1
py

(a) Define the least-squares direction & XLX 4) "X Ly, and de-
1A A
fine the p-vector A such that A4 = & { the remaining elements are

Z€ro. lambda here represents kind of turning point
Move the coefficients 8 from 8¥~! in the direction A toward their least-
squares solution on X 4: B(A) = A1 + (Ar—1 — M)A for 0 < A < A1,
keeping track of the evolving residuals 7(\) = y — XB(\) = rp—1 —
(Ar—1 — M) XA.
Keeping track of |(xg, 7(A))] for ¢ ¢ A, identify the largest value of X
at which a variable “catches up” with the active set; if the variable has
index j, that means |(x;, 7(\))| = A. This defines the next “knot” Aj.
(d) Set A = AU{]}, ﬁk = B(/\k) = ﬂk71 +()\k—1 7)\]@)A, and r, = y7X5’°.
4. Return the sequence {\g, B¥}K. update parameters

(b

N

(c

N

32/57



The Annals of Statistics
2004, Vol. 32, No. 2, 407 499
© Institute of Mathematical Statistics, 2004

LEAST ANGLE REGRESSION

BY BRADLEY EFRON,! TREVOR HASTIE,2 IAIN JOHNSTONE?
AND ROBERT TIBSHIRANI*

Stanford University

The purpose 0‘" model selection algorithms ‘uch as All Subsets, Forward
Selection and Backward Elimination is to choose a linear model on the
basis of the same set of data to which the model will be applied. Typically
we have available a large collection of possible covanates from which we
hope to select a parsimonious set for the efficiept _prediction o espon

variable. Least Angle Regression (LARS) a new
is a useful and less greedy version i i

Three main properties are derived: i(l) A simple modification of the LARS |

algorithm implements the Lasso, lin attractive version of ordinary least

squares that constrans the sum of the absolute regression coefficients;

the LARS modification calculates all possible Lasso estimates for a given

problem, using an order of magnitude less computer time than previous

methods. (2) A different LARS modification efficiently implements Forward

Stagewise linear regression, another promising new model selection method;

this connection explains the similar numerical results previously observed

for the Lasso and Stagewise, and helps us understand the properties of

both methods, which are seen as constrained versions of the simpler LARS

algorithm. (3) A simple approximation for the degrees of freedom of a LARS

estimate is available, from which we derive a C), estimate of prediction error;

this allows a principled choice among the range of possible LARS estimates.

LARS and its variants are computationally efficient: the paper describes

a publicly available algorithm that requires only the same order of magnitude 33/57




|
Step 1

e Standardize the predictors to have mean zero and unit 2 norm. Start
with the residual rp =y — y, 8% = (61, B2, ..., Bp) = 0.

o Y Liyi=0, Yiixg=0, YlLixg=1 forj=1,2....m

o Angle:

(Y, X) = E{YX} = Cov(X, Y) ~ cos(f) = corr(X, Y) = (X, Y).

34/57



Step 2

o A=1{2}

35/57



.
Step 3

@ least-squares directions

36/57



|
Step 4

@ decrease \ from A\,_1 to O
@ add new variable to the active set

AN \{

aYLk)

14 A

kesping  fvoc of <, ro0s|
010 = 3-8 ) st 8.8,
A<E A
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|
Step 5

e continue until all variables are in the model (OLS)

A= a2

w3 x| = 00
> B

38/57



N
LARS comments
o IANMBR/NABEIT? ~ BIXIREIIA (IBXEHNENE) 2R

INES.
o F lasso FRAYHIT+1B(L. arc length FLEERVIHL.

LASSO LAR
3

01 2 4 5 79 12 01 2 3 4 5 79 10
8 8
3 o 8 ©
- -
- -
2 Pr o2 P ®
S - 3 -
g 2% ° e
8 - — |\ 3 - —
S o -8 o -
H < S H - S T
B ~ 2 ~
3 NS 3 NS
§ N 5 N
a ~¢ 8 =4
8 8
T T T T T T T
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Arc Length Arc Length
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|
LARS modification
o HEIME: —MEM.
o lasso: X' (y— XB) = \-0|B)|,Vj
o LARS: X[ (y— XB) =v-s;,57€ {-1,1}

40/ 57



N
LARS modification

3(c)+ lasso modification: If a nonzero coeflicient crosses zero before the next
variable enters, drop it from A and recompute the current joint least-
squares direction.

LASSO MODIFICATION.  If ¥ < 7, stop the ongoing LARS step at y =} and
remove j from the calculation of the next equiangular direction. That is,

(3.6) Ba, =Ryu+Pusy and Ay =A—{j}
rather than (2.12).

THEOREM 1. Under the Lasso modification, and assuming the “one at a time”
condition discussed below, the LARS algorithm yields all Lasso solutions.

Proof: refer P437 of the LARS paper.

41/57



Uniqueness of the Lasso Solutions

Ryan Tibshirani 3 considered the uniqueness of the lasso solutions. The
paper focused on LARS algorithm based solutions and gives a proof of the
uniqueness of the lasso solutions.

Using theories in standard convex optimization, we can show that for any
y, X, and A > 0, the lasso problem (in Lagrangian) has the following
properties:

© There is either a unique lasso solution or an (uncountably) infinite
number of solutions.

@ Every lasso solution B gives the same fitted value XB ~> unique
optimal value.

@ If A > 0, then every lasso solution § has the same ¢1 norm, ||3]:.

3Ryan J. Tibshirani. The Lasso Problem and Uniqueness. arXiv:1206.0313. Nov.
2012
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Uniqueness of the Lasso Solutions

Proof. (i) The lasso criterion is convex and has no directions of recession (strictly speaking, when
A = 0 the criterion can have dlrecmons of recession, but these are directions in which the criterion is

constant). The: i for example, Theorem 27.1 of Rockafellar
(1970)), that isthe lasso problem has at least one solution.| Suppose now that there are two solutions
BM) and pRL AT Z 3T R the-selution-set-ok. inimization problem is convex, we

know thal QB(U +(1- a)Bm is also a solution for any 0 < a < 1,|which gives uncountably many
lasso solufions as o varies over (U, 1).

(ii) Suppose that we have two solutions A1) and 3@ withf X531 £ X3®)| Let ¢* denote the

minimum value of the lasso criterion obtained by E‘(l), 3(2)‘ For any 0 < a < 1, we have

—IIy X (B + (1= )3+ MapM + (1 - a)8? |1 < ac” + (1 - a)e” = ¢,

where the strict inequality is due to th(l strict convexity of the function f(z) = ||y — z||3 I}long with
the convexity of f(z) = ||z||;. This means that o™ + (1 —a)5¥) attains a lower criterion value
than ¢*

(iii) By (ii), any two solutions must have the same fitted value, and hence the same squared error
loss. But the solutions also attain thf the lasso criterion, and if A > 0, then they must
have the same ¢; norm. O
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Theoretical Properties of the Lasso

Mean-Squared Error Consistency
With high probability:

L X3 = 50)[| 5 ol 22

@ Requires ||5o]|; = o(v/N/log(p)) (sparse true parameters) to obtain
MSE consistency

@ No additional conditions on design matrix X

44 /57



-
Proof of MSE Consistency

For any coefficient vector 8 € RY,

1 . A 1
1Y = XBIE + MBI < S 1Y = XBII5 + AllBlh

Simply rearranging,

1 N 1 A
Y= X513 = 21— X813 < A (181 — 1))

Then adding and subtracting X5 in the leftmost term, and expanding the
square, we get

1,5 A .

5 IXB = XBI3 < (v = X8, X8 — x8) + A (1181 — 3]l
where we have moved the inner product term to the right-hand side. This
is true for any vector 3. Taking 8 = [y in particular and recognizing
Y — XBy = e, the noise vector, we get from the last display our basic
inequality for 3,

10 2 . .
5 X8 = x50 < (e.xB = x80) + 2 (I5oll, — 1811

45 /57



|
Proof of MSE Consistency(Cont'd)

A result on the in-sample prediction risk for the lasso is only a few lines
away. Observe that

(e, X8 = XBo) = (Xe.8— By )

<[Pl 15—,
o) 1

Thus from the last page, we learn that

5 |8 = xaol[L < [xmel|_ |13 o], + A (10l ~ 1311)
and using the triangle inequality,
5 |8 = xaol[L < [mel| (115 + 8ol ) + A (ol ~ 1811
<22 [Boll;

where the second line holds if we take A > HXTeHOO.
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|
Proof of MSE Consistency(Cont'd)

Then we can conduct concentration analysis on HXTGHOO to get a
high-probability bound on the quantity.
Note that X" e has sub-Gaussian entries with mean zero and variance

-----

sub-Gaussian random variables,

(|

_Z o\/2n(log(2p) + U)) <et

for any u > 0. Therefore, taking A = o1/2n(log(2p) + u), we get

2(log(2p) + u)

1 R 2
il - <
= ||XB = xB0|| < 40 1150l v

with probability at least 1 — e~“. This bound yields what is called the

“slow” rate for the penalized lasso estimator: the in-sample prediction risk

scales as ||fol|, \/(log p)/N.
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Variable-Selection Consistency for the Lasso

Theorem

Under regular conditions?, For a noise vector ¢ € RN with i.i.d. N(O7 02)
entries, consider the regularized (Lagrangian) lasso program with sufficient
large A:

> 8Keimo logp'
- N

Co N)\%,

AN

Then with probability greater than 1 — ¢c;e™ , the lasso has the

following properties:

@ Uniqueness: The optimal solution B is unique.

-~

@ No false inclusion: The unique optimal solution has its support S(f3)
contained within the true support S(5%).

Martin J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of
sparsity. arXiv:math/0605740. May 2006
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Variable-Selection Consistency for the Lasso(Cont'd)

Theorem(Cont'd)

With probability greater than 1 — cre=2MA%, the lasso has the following
properties:

©Q /-bounds: The error B— (3* satisfies the /o, bound

[ 2] < w7+ Joctxsm |

B(An,0;X)

where for a matrix A, its co-norm is given by
[Alloc = max)y) =1 [|Au]lc.

@ No false exclusion: The lasso solution includes all indices j € S(5%)
such that BJ’-"

consistent as long as minjcg ’ﬁﬂ > B(An, 0;X).

> B(An,0;X), and hence is variable selection




Consistency Conditions: Strong Convexity

In OLS, analysis of the convergence of the optimal value to the true
value is based on the strong convexity of the loss function (objective
function).

@ It requires that the objective function not to be too flat around the
true value.

F(0') = 0) = VAO)T (0" = 0) + 2 [|o' — o]

@ Standard convergence rates for optimization algorithms are based on
the strong convexity of the objective function®*.

@ However, in high-dimensional statistics, the loss function is not
strongly convex due to X' X is rank-deficient.

“Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. en. Version 29.
Cambridge New York Melbourne New Delhi Singapore: Cambridge University Press,

2023
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-
Strong Convexity Violated

Vg(md

Vhad
too flat in this direction

[E]: A convex loss function in high-dimensional settings (with p > N ) cannot be
strongly convex; rather, it will be curvedAin some directions but flat in others. It
can be shown that, the lasso error 7 = 8 — 3* must lie in a restricted subset C of
RP. For this reason, it is only necessary that the loss function be curved in certain

directions of space.
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Restricted Eigenvalue Condition

For some subset C C RP of possible perturbation vectors v € RP. In
particular, we say that a function f satisfies restricted strong convexity at
B* with respect to C if there is a constant v > 0 such that

vIV2AB)v

5 > ~ for all nonzero v € C,
415

and for all 5 € RP in a neighborhood of 3*.

Let D € RI® denote the subvector indexed by elements of S, with Dgc
defined in an analogous manner. For appropriate choices of the ¢;— ball
radius-or equivalently, of the regularization parameter Ap-it turns out that
the lasso error satisfies a cone constraint of the form

[Vselly < el

for some o > 1.
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Consistency Results

Consistency
Under suitable restricted eigenvalue condition,
© Then any estimate B based on the constrained lasso (11.2) with R =

8%, satisfies the bound

@ Given a regularization parameter Ay > 2 HXTWH /N >0, any

estimate ﬁ from the regularized lasso (11.3) satisfies the bound

-, = 3y v
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N
Elastic Net

@ Zou and Hastie (2005) proposed the elastic net, which combines the
penalties of the lasso and ridge gives 5" (\, )

N

min {;Z Bg—xiTﬂ) + A (1—04)“5H2+04H6H1}}

(Bo,B)ERXRP Py

@ Because the constraint is not smooth, it encourages sparse solution as
the lasso.

@ Due to the ridge penalty, it can deal with collinearity of the covariates
better than the lasso.

@ Implemented in glmnet package
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N
Elastic Net

by
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Nonnegative Garrote

e Obtain initial estimate 3 (OLS, lasso, ridge, elastic net)

@ Solve optimization problem:

2
N

P
min Z '_ZC'X'ﬂ'
o Yi L X

J:

i=1

subject to c = 0 and ||c[j; < t

o Final estimate: BJ =¢j- ﬁj
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Orthogonal Case

When columns of X are orthogonal:

~ A .
C:j:<1_~2> ) _]:1,,,0
52

where A is chosen so that ||| = t.
o Large coefficients: minimal shrinkage (near 1)
e Small coefficients: severe shrinkage (toward 0 )

@ Exhibits nonconvex penalty behavior
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