
Statistical Learning with Sparsity
A Brief Introduction

Boen Jiang

Fudan University

November 11, 2024

1 / 57



Brief Histories: Robert Tibshirani

a

aRobert Tibshirani. “Regression
Shrinkage and Selection Via the Lasso”. en.
In: Journal of the Royal Statistical Society
Series B: Statistical Methodology 58.1 (Jan.
1996), pp. 267–288

Rob Tibshirani
B. Math. in statistics and
computer science from the
University of Waterloo in 1979.
Master’s degree in Statistics
from the University of Toronto
in 1980.
Received his Ph.D. in 1984
under the supervision of Bradley
Efron.
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Breif Histories: Leo Breiman

a

aLeo Breiman. “Better Subset
Regression Using the Nonnegative Garrote”.
en. In: 37.4 (1995)

Let
{
β̂k
}

be the original OLS
estimates. Take {ck} to
minimize

∑
k

(
yn −

∑
k

ckβ̂kxkn

)2

under the constraints

ck ≥ 0,
∑

k
ck ≤ s.

The β̃k(s) = ckβ̂k are the new
predictor coefficients.
“Lasso is a softer term for
Canadian than Garrote”.
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Brief Histories: Jerome Friedman

a

aJerome Friedman et al. “Pathwise
coordinate optimization”. en. In: The
Annals of Applied Statistics 1.2 (Dec.
2007). arXiv:0708.1485 [stat]. issn:
1932-6157

In history, the coordinate
descent idea appeared in Fu
(1998), then in Daubechies et
al. (2004), but it was ignored
then. Later in 2007 it gained
popularity.
This work focused on linear
regression. Friedman and Hastie
focused the implementation of R
package glmnet.
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Interesting Connections
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Linear Regression
Given:

N samples {(xi, yi)}N
i=1,

xi = (xi1, . . . , xip) is a p-dimensional vector of predictors and each
yi ∈ R is the associated response variable.

Linear Regression Model:

yi = β0 +

p∑
j=1

xijβj + ei

where
β = (β0, β1, . . . , βp) are unknown parameters and ei are error terms.

Ordinary Least Squares for parameter β

minimize
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2
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Trouble in High Dimensions

Least squares risk degrades as p → n:

1

nE
[∥∥∥Xβ̂ − Xβ0

∥∥∥2
2

∣∣∣X] = σ2 p
n

When p > n, least squares has no unique solution:

β̂ =
(

X⊤X
)+

X⊤Y + η, η ∈ ker(X)

where A+ is pseudo-inverse, ker(A) is the null space
Coefficient interpretation impossible ⇝ for any β̂j > 0, exists β̃j < 0
solution
Sign consistency unattainable
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Remarks on Sparsity

“We are drowning in information and starving for knowledge.”

sparse statistical model is one in which only a relatively small number
of parameters (or predictors) play an important role
reasonable interpretation of the fitted model and computational
convenience
Use a procedure that does well in sparse problems, since no procedure
does well in dense problems.

The “Bet on Sparsity”Principle
Use methods that perform well under sparsity, as no method performs well
in dense problems.
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An Example for lasso-regularized multinomial classifier

图: 15-class gene expression cancer data: estimated nonzero feature weights from
a lasso-regularized multinomial classifier. Shown are the 254 genes (out of 4718)
with at least one nonzero weight among the 15 classes. The genes (unlabelled)
run from top to bottom. Line segments pointing to the right indicate positive
weights, and to the left, negative weights. We see that only a handful of genes
are needed to characterize each class.
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An example of the 2d fused lasso for image denoising

图: We started with a toy signal, shown in (a). The colors green, blue, purple, red
in the image correspond to the numeric levels 1, 2, 3, 4, respectively. We then
added noise, shown in (b), interpolating between colors to display the intermediate
values. This is used as the data y in the 2d fused lasso problem. The solution (for
λ = 1 ) is shown in (c), and it is a fairly accurate reconstruction. The fused lasso
is effective here because the original image is piecewise constant. 1

1Ryan J. Tibshirani and Jonathan Taylor. “The solution path of the generalized
lasso”. en. In: The Annals of Statistics 39.3 (June 2011)
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Lasso Estimator

Lasso for Linear Regression (optimization with ℓ1-norm constraint)
Given a collection of N predictor-response pairs {(xi, yi)}N

i=1, the lasso
finds the solution β̂ to the optimization problem

minimize
β

 1

2N

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2
subject to

p∑
j=1

|βj| ≤ t

The constraint
∑p

j=1 |βj| ≤ t can be written more compactly as the
ℓ1-norm constraint ∥β∥1 ≤ t.
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Remarks on Lasso Problem

Typically, we first standardize the predictors X so that each column is
centered

(
1
N
∑N

i=1 xij = 0
)

and has unit variance
(

1
N
∑N

i=1 x2ij = 1
)

.
Without standardization, the lasso solutions would depend on the
units (e.g., feet versus meters) used to measure the predictors. On
the other hand, we typically would not standardize if the features
were measured in the same units.
For convenience, we also assume that the outcome values yi have
been centered, meaning that 1

N
∑N

i=1 yi = 0. These centering
conditions are convenient, since they mean that we can omit the
intercept term β0 in the lasso optimization.
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Lagrangian Formulation (Not Dual Form)

minimize
β

{
1

2N ∥y − Xβ∥22
}

subject to ∥β∥1 ≤ t,

is equivalent to the Lagrangian form:

minimize
β∈Rp

{
1

2N∥y − Xβ∥22 + λ∥β∥1
}
,

for some λ ≥ 0. The two forms are equivalent in the sense that for a given
λ, there exists a t with the same solution.

For each value of t in the range where the constraint ∥β∥1 ≤ t is
active, there is a corresponding value of λ that yields the same
solution from the Lagrangian form.
Conversely, the solution β̂λ to Lagrangian problem solves the bound
problem with t =

∥∥∥β̂λ∥∥∥
1
.
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Canonical Regularizers in Regression

ℓ0 pseudo-norm: subset selection

∥β∥0 =
p∑

j=1

1 {βj ̸= 0}

fails positive homogeneity
not convex ⇝ NP-hard

ℓ1 norm: lasso

∥β∥1 =
p∑

j=1

|βj|

ℓ2 norm: ridge

∥β∥2 =

 p∑
j=1

β2
j

1/2
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Convex Optimization Conditions
Since lasso problem has a convex objective function, and a convex
constraint, the solution to the lasso problem is guaranteed to be a
global minimum. The lasso problem is a convex optimization problem.
the ℓ1-norm g(β) =

∑p
j=1 |βj| is a convex function, but it fails to be

differentiable at any point where at least one coordinate βj is equal to
zero ⇝ subgradient.
a vector z ∈ Rp is said to be a subgradient of f at β if
f (β′) ≥ f(β) + ⟨z, β′ − β⟩ for all β′ ∈ Rp.
At points of nondifferentiability, the subdifferential is a convex set
containing all possible subgradients.
For absolute value function f(β) = |β|, we have

∂f(β) =


{+1} if β > 0

{−1} if β < 0

[−1,+1] if β = 0
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Subgradient

图: A convex function f : R → R, along with some examples of subgradients at β1

and β2. In geometric terms, the subgradient vector z is the normal to a
(nonvertical) hyperplane that supports the epigraph of f.
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Generalized KKT’s Stationary Condition

0 ∈ ∂f (β∗) +

m∑
j=1

λ∗
j ∂gj (β

∗)

Hence, a necessary condition for β∗ to be a solution to the lasso problem
is that

− 1

N ⟨xj, y − Xβ⟩+ λsj = 0, j = 1, . . . , p

Here each sj is an unknown quantity equal to sign (βj) if βj ̸= 0 and some
value lying in [−1, 1] otherwise – that is, it is a subgradient for the
absolute value function.
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Contour Plots: Lasso vs Ridge

Why are the plot like these?

(Y − Xb)⊤(Y − Xb) = (Y − Xβ̂)T(Y − Xβ̂) + (b − β̂)TXTX(b − β̂)
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Generalization – Overfitting Tradeoff

larger values of t free up more parameters and allow the model to
adapt more closely to the training data,
smaller values of t restrict the parameters more, leading to sparser,
more interpretable models that fit the data less closely.
A value of t that is too small can prevent the lasso from capturing the
main signal in the data, while too large a value can lead to overfitting.
⇝ K-fold cross-validation to select the best value of t.
K = 5, 10 in general. K can be N for leave-one-out
cross-validation(LOOCV).
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K-fold Cross-validation
1 Randomly divide the set of observations into K > 1 groups, or folds,

of approximately equal size.
2 Fix one fold as test set and remaining k − 1 folds as training sets.
3 Apply the lasso to the training data for a range of different t values.
4 Use each fitted model to predict the response in the test set.
5 Determine the mean-squared prediction errors for each value of t

Mean-squared error for test fold j :

MSEj =
1

|Fj|
∑
i∈Fj

(
yi − f̂ (xi)

)2
.

6 Repeat process k times such that each fold is once the test set.
7 Average k mean-squared errors for each value of t

CV(k)(t) =
1

k

k∑
i=1

MSEi

“cross-validation error curve”.
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Baseball Data Analysis

图: we can see from the coefficient plot that depending on lambda, some of the
coefficients will be exactly equal to zero
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Baseball Data Analysis: Cross-validation
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Computing the lasso using commercial solvers
The lasso problem is a convex program, specifically a quadratic program
(QP) with a convex constraint. As such, there are many commercial
solvers for solving the lasso. For example, Gurobi, Mosek .

图: Gurobi is a commercial optimization solver that can be used to solve the lasso
problem. The above code snippet shows how to use Gurobi to solve the lasso
problem in Python. 23 / 57



Coordinate descent lemma
Let’s begin with toy case. Let sign(x) denote the sign of a real number x,
which equals 1, 0,−1 if x > 0, x = 0, x < 0, respectively. Let
(x)+ = max(x, 0) denote the positive part of a real number x.
By classification discussion, given b0 and λ ≥ 0, we have

arg min
b∈R

1

2
(b − b0)2 + λ|b| = sign (b0) (|b0| − λ)+

=


b0 − λ, if b0 ≥ λ,

0 if − λ ≤ b0 ≤ λ,

b0 + λ if b0 ≤ −λ.

≜ Sλ (b0) .
Here the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

translates its argument x toward zero by the amount λ, and sets it to zero
if |x| ≤ λ.
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Soft Thresholding
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Soft Thresholding
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Computing the lasso via coordinate descent
The glmnet package in R uses the coordinate descent algorithm.

图: In Ryan Tibshirani’s slides, the coordinate descent algorithm is outperforming.
Trever also compares (among others) his two R packages: glmnet (using
coordinate descent) and lars (using LARS). It’s shown that coordinate descent is
faster in each setting: p > N,p < N and sparse or dense data.

27 / 57



Coordinate Descent Algorithm

For a general case, write the Lagrangian form of the lasso problem as

1

2N

N∑
i=1

yi −
∑
k̸=j

xikβk − xijβj

2

+ λ
∑
k ̸=j

|βk|+ λ |βj|

Denote partial residual as

rij = yi −
∑
k ̸=j

β̂kxik

Then we need to optimize

1

2N

N∑
i=1

(rij − βjxij)
2 + λ |βj| .
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Coordinate Descent Algorithm
Run OLS of rij on xij to get the estimate β̂j,0. Here,

β̂j,0 =

∑n
i=1 xijrij∑n

i=1 x2ij(= n) = n−1
n∑

i=1

xijrij

By adding and substracting,

1

2N

N∑
i=1

(rij − βjxij)
2 =

1

2N

N∑
i=1

(
rij − β̂j,0xij

)2
+

1

2N

N∑
i=1

x2ij
(
βj − β̂j,0

)2
= constant +

1

2

(
βj − β̂j,0

)2
.

Using the soft-thresholding operator, we have

β̂j = Sλ

(
β̂j,0
)
.
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Comments on Coordinate Descent Algorithm

The theory of Tseng (2001) ensures the convergence of the
algorithm.2

We can start with a large λ and all zero coefficients.
We then gradually decrease λ, for each λ, we apply the algorithm.
We finally select λ via K-fold CV.
Since we gradually decrease λ, the initial values of from the last step
are very close to the minimizer and the algorithm converges fairly fast.

2P. Tseng. “Convergence of a Block Coordinate Descent Method for
Nondifferentiable Minimization”. en. In: Journal of Optimization Theory and
Applications 109.3 (June 2001), pp. 475–494. issn: 1573-2878
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Degree of Freedom

Suppose we have an additive-error model, with

yi = f (xi) + ϵi, i = 1, . . . ,N,

for some unknown f and with the errors ϵi id
(
0, σ2

)
. If the N sample

predictions are denoted by ŷ, then we define

df(ŷ) := 1

σ2

N∑
i=1

Cov (ŷi, yi) .

This is consistent with the degrees of freedom in the usual definition of the
t-statistic for a linear model.

The degrees of freedom corresponds to the total amount of self-influence
that each response measurement has on its prediction.
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LARS Algorithm
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Step 1

Standardize the predictors to have mean zero and unit ℓ2 norm. Start
with the residual r0 = y − ȳ, β0 = (β1, β2, ..., βp) = 0.∑n

i=1 yi = 0,
∑n

i=1 xij = 0,
∑n

i=1 x2ij = 1 for j = 1, 2, . . . ,m
Angle:
⟨Y,X⟩ = E{YX} = Cov(X,Y)⇝ cos(θ) = corr(X,Y) = ⟨X,Y⟩.
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Step 2

A = {2}
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Step 3

least-squares directions
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Step 4
decrease λ from λk−1 to 0
add new variable to the active set
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Step 5

continue until all variables are in the model (OLS)
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LARS comments
为什么叫最小角回归? ⇝ 每次找到的角 (相关系数的绝对值) 是最
小的.
和 lasso 解的轨迹十分相似. arc length 就是走的弧长.
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LARS modification
共同性: 一阶条件.
lasso: X⊤

j (y − Xβ) = λ · ∂|βj|, ∀j
LARS: X⊤

j (y − Xβ) = ν · sj, sj ∈ {−1, 1}
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LARS modification

Proof: refer P437 of the LARS paper.
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Uniqueness of the Lasso Solutions

Ryan Tibshirani 3 considered the uniqueness of the lasso solutions. The
paper focused on LARS algorithm based solutions and gives a proof of the
uniqueness of the lasso solutions.
Using theories in standard convex optimization, we can show that for any
y,X, and λ ≥ 0, the lasso problem (in Lagrangian) has the following
properties:

1 There is either a unique lasso solution or an (uncountably) infinite
number of solutions.

2 Every lasso solution β̂ gives the same fitted value Xβ̂ ⇝ unique
optimal value.

3 If λ > 0, then every lasso solution β̂ has the same ℓ1 norm, ∥β̂∥1.

3Ryan J. Tibshirani. The Lasso Problem and Uniqueness. arXiv:1206.0313. Nov.
2012
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Uniqueness of the Lasso Solutions
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Theoretical Properties of the Lasso

Mean-Squared Error Consistency
With high probability:

1

N

∥∥∥X
(
β̂ − β0

)∥∥∥2
2
≲ ∥β0∥1

√
log(p)

N

Requires ∥β0∥1 = o(
√

N/ log(p)) (sparse true parameters) to obtain
MSE consistency
No additional conditions on design matrix X
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Proof of MSE Consistency
For any coefficient vector β ∈ Rd,

1

2
∥Y − Xβ̂∥22 + λ∥β̂∥1 ≤

1

2
∥Y − Xβ∥22 + λ∥β∥1

Simply rearranging,
1

2
∥Y − Xβ̂∥22 −

1

2
∥Y − Xβ∥22 ≤ λ

(
∥β∥1 − ∥β̂∥1

)
Then adding and subtracting Xβ in the leftmost term, and expanding the
square, we get

1

2
∥Xβ̂ − Xβ∥22 ≤ ⟨Y − Xβ,Xβ̂ − Xβ⟩+ λ

(
∥β∥1 − ∥β̂∥1

)
where we have moved the inner product term to the right-hand side. This
is true for any vector β. Taking β = β0 in particular and recognizing
Y − Xβ0 = ϵ, the noise vector, we get from the last display our basic
inequality for β̂,

1

2

∥∥∥Xβ̂ − Xβ0
∥∥∥2
2
≤
〈
ϵ,Xβ̂ − Xβ0

〉
+ λ

(
∥β0∥1 − ∥β̂∥1

)
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Proof of MSE Consistency(Cont’d)
A result on the in-sample prediction risk for the lasso is only a few lines
away. Observe that〈

ϵ,Xβ̂ − Xβ0
〉
=
〈

X⊤ϵ, β̂ − β0

〉
≤
∥∥∥X⊤ϵ

∥∥∥
∞

∥∥∥β̂ − β0

∥∥∥
1
.

Thus from the last page, we learn that

1

2

∥∥∥Xβ̂ − Xβ0
∥∥∥2
2
≤
∥∥∥X⊤ϵ

∥∥∥
∞

∥∥∥β̂ − β0

∥∥∥
1
+ λ

(
∥β0∥1 − ∥β̂∥1

)
,

and using the triangle inequality,
1

2

∥∥∥Xβ̂ − Xβ0
∥∥∥2
2
≤
∥∥∥X⊤ϵ

∥∥∥
∞

(
∥β̂∥1 + ∥β0∥1

)
+ λ

(
∥β0∥1 − ∥β̂∥1

)
≤ 2λ ∥β0∥1

where the second line holds if we take λ ≥
∥∥X⊤ϵ

∥∥
∞.
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Proof of MSE Consistency(Cont’d)
Then we can conduct concentration analysis on

∥∥X⊤ϵ
∥∥
∞ to get a

high-probability bound on the quantity.
Note that X⊤ϵ has sub-Gaussian entries with mean zero and variance
proxy maxj=1,...,p ∥Xj∥22 σ

2 ≤ nσ2. By a result on the maximum of
sub-Gaussian random variables,

P
(∥∥∥X⊤ϵ

∥∥∥
∞

≥ σ
√

2n(log(2p) + u)
)
≤ e−u

for any u > 0. Therefore, taking λ = σ
√

2n(log(2p) + u), we get

1

N

∥∥∥Xβ̂ − Xβ0
∥∥∥2
2
≤ 4σ ∥β0∥1

√
2(log(2p) + u)

N

with probability at least 1− e−u. This bound yields what is called the
“slow” rate for the penalized lasso estimator: the in-sample prediction risk
scales as ∥β0∥1

√
(log p)/N.
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Variable-Selection Consistency for the Lasso

Theorem
Under regular conditionsa, For a noise vector ε ∈ RN with i.i.d. N

(
0, σ2

)
entries, consider the regularized (Lagrangian) lasso program with sufficient
large λ:

λN ≥ 8Kclmσ

γ

√
log p

N .

Then with probability greater than 1− c1e−c2Nλ2
N , the lasso has the

following properties:
1 Uniqueness: The optimal solution β̂ is unique.
2 No false inclusion: The unique optimal solution has its support S(β̂)

contained within the true support S (β∗).
aMartin J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of

sparsity. arXiv:math/0605740. May 2006
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Variable-Selection Consistency for the Lasso(Cont’d)

Theorem(Cont’d)
With probability greater than 1− c1e−c2Nλ2

N , the lasso has the following
properties:

4 ℓ∞-bounds: The error β̂ − β∗ satisfies the ℓ∞ bound∥∥∥β̂S − β∗
S

∥∥∥
∞

≤ λN

[
4σ√
Cmin

+
∥∥∥(XT

S XS/N
)−1
∥∥∥
∞

]
︸ ︷︷ ︸

B(λN,σ;X)

where for a matrix A, its ∞-norm is given by
∥A∥∞ = max∥u∥∞=1 ∥Au∥∞.

5 No false exclusion: The lasso solution includes all indices j ∈ S (β∗)

such that
∣∣∣β∗

j

∣∣∣ > B (λN, σ;X), and hence is variable selection

consistent as long as minj∈S
∣∣∣β∗

j

∣∣∣ > B (λN, σ;X).
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Consistency Conditions: Strong Convexity

In OLS, analysis of the convergence of the optimal value to the true
value is based on the strong convexity of the loss function (objective
function).
It requires that the objective function not to be too flat around the
true value.

f
(
θ′
)
− f(θ) ≥ ∇f(θ)T (θ′ − θ

)
+

γ

2

∥∥θ′ − θ
∥∥2
2

Standard convergence rates for optimization algorithms are based on
the strong convexity of the objective function4.
However, in high-dimensional statistics, the loss function is not
strongly convex due to X⊤X is rank-deficient.

4Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. en. Version 29.
Cambridge New York Melbourne New Delhi Singapore: Cambridge University Press,
2023
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Strong Convexity Violated

图: A convex loss function in high-dimensional settings (with p ≫ N ) cannot be
strongly convex; rather, it will be curved in some directions but flat in others. It
can be shown that, the lasso error ν̂ = β̂ − β∗ must lie in a restricted subset C of
Rp. For this reason, it is only necessary that the loss function be curved in certain
directions of space.
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Restricted Eigenvalue Condition

For some subset C ⊂ Rp of possible perturbation vectors ν ∈ Rp. In
particular, we say that a function f satisfies restricted strong convexity at
β∗ with respect to C if there is a constant γ > 0 such that

νT∇2f(β)ν
∥ν∥22

≥ γ for all nonzero ν ∈ C,

and for all β ∈ Rp in a neighborhood of β∗.
Let ν̂S ∈ R|S| denote the subvector indexed by elements of S, with ν̂Sc

defined in an analogous manner. For appropriate choices of the ℓ1− ball
radius-or equivalently, of the regularization parameter λN-it turns out that
the lasso error satisfies a cone constraint of the form

∥ν̂Sc∥1 ≤ α ∥ν̂S∥1 ,

for some α ≥ 1.
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Consistency Results

Consistency
Under suitable restricted eigenvalue condition,

1 Then any estimate β̂ based on the constrained lasso (11.2) with R =
∥β∗∥1 satisfies the bound

∥∥∥β̂ − β∗
∥∥∥
2
≤ 4

γ

√
k
N

∥∥∥∥XTw√
N

∥∥∥∥
∞

2 Given a regularization parameter λN ≥ 2
∥∥XTw

∥∥
∞ /N > 0, any

estimate β̂ from the regularized lasso (11.3) satisfies the bound

∥∥∥β̂ − β∗
∥∥∥
2
≤ 3

γ

√
k
N
√

NλN
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Elastic Net

Zou and Hastie (2005) proposed the elastic net, which combines the
penalties of the lasso and ridge gives β̂enet (λ, α)

min
(β0,β)∈R×Rp

{
1

2

N∑
i=1

(
yi − β0 − xT

i β
)2

+ λ

[
1

2
(1− α)∥β∥22 + α∥β∥1

]}
.

Because the constraint is not smooth, it encourages sparse solution as
the lasso.
Due to the ridge penalty, it can deal with collinearity of the covariates
better than the lasso.
Implemented in glmnet package
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Elastic Net
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Nonnegative Garrote

Obtain initial estimate β̃ (OLS, lasso, ridge, elastic net)
Solve optimization problem:

min
c∈Rp


N∑

i=1

yi −
p∑

j=1

cjxijβ̃j

2
subject to c ⪰ 0 and ∥c∥1 ≤ t
Final estimate: β̂j = ĉj · β̃j
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Orthogonal Case

When columns of X are orthogonal:

ĉj =

(
1− λ

β̃2
j

)
+

, j = 1, . . . , p

where λ is chosen so that ∥ĉ∥1 = t.
Large coefficients: minimal shrinkage (near 1)
Small coefficients: severe shrinkage (toward 0 )
Exhibits nonconvex penalty behavior
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