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Lasso: recap

Least Absolute Shrinkage and Selection Operator (lasso)

Recall that the lasso estimate is defined by

N . 1
IBIasSO()\) = argmin {ZIVHy - XBH% + )\HBHI} ’
BERP

where A > 0 is a tuning parameter that controls the amount of shrinkage.

4

For the red part of the objective
function, we can generalize the
square loss to other loss functions:

For the blue part of the objective
function, we can generalize the lasso

) o penalty to other penalties:
o Negative log-likelihood for GLMs i
) o o Elastic net
o Negative log-partial-likelihood

for Cox models
@ Hinge loss for SVM

@ Group lasso

@ Fused lasso
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Part |

@ Negative log-likelihood for GLMs
@ Negative log-partial-likelihood for Cox models
@ Hinge loss for SVM
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Binary response variable

@ For simplicity, we can still use the linear model for a binary outcome
@ Linear probability model y; = x,-TB +ei, E(eilx)=0
P(yi=1]x)=E(yi|x)=x'8.
@ Easy interpretation
OP(yi=1]x) _ 4
8X,'j J
However, there are two defects:
o Heteroskedasticity ~ Var (y; | x;) = x| 3 (1 — x?ﬁ).
@ Not natural for binary outcome because probability is bounded
between zero and one.

4/126



N
GLMs

A generalized linear model is made up of a linear predictor
ni = Bo + Bixti + ... + BpXpi

and two functions:
e link function that describes how the mean, E(Y;) = u;, depends on
the linear predictor
g (i) =i
@ variance function that describes how the variance, Var (Y;), depends
on the mean

Var (Yi) = ¢ V(1)

where the dispersion parameter ¢ is a constant
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Link functions

We can use a monotone transformation to force the linear predictor to lie
within the interval [0, 1]:

P(yi = 1|x) = g(x' B).

Here, the inverse of g is called the link function.
There are some canonical choices of g:

e Logit link: g(t) = %tet = #

@ Probit link: g(t) = ®(t), c.f. standard normal distribution

c.f. standard logistic distribution

e Complementary log-log link: g(t) =1— e, c.f. standard
log-Weibull distribution

e Cauchit link: g(t) = % arctan(t) + 3, c.f. standard Cauchy
distribution
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-
Modelling Binomial Data

Suppose
Y; ~ Binomial (n;, p;)

and we wish to model the proportions Y;/n;. Then
1
E(Yi/nj)=p; Var(Yi/n;)= P (1—pi)
1
So our variance function is
Vi (ui) = pi (1 — pi)

Our link function must map from (0,1) — (—00,00). A common choice is

g (ui) = logit (u;) = log ( = >

1—pi
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-
Modelling Poisson Data

Suppose
Y; ~ Poisson ()\;)
Then
E(Yi) =X Var(Yi) =\
So our variance function is
V(ui) = i

Our link function must map from (0, 00) — (—o0, 00). A natural choice is

g (ki) = log (ui)
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One-parameter Canonical Exponential Family

@ Canonical exponential family for k =1,y € R

y0 — b(0)
o)

for some known functions b(-) and c(+,-).

() =0 +elr:9)

o If ¢ is known, this is a one-parameter exponential family with 6 being
the canonical parameter.

e If ¢ is unknown, this may/may not be a two-parameter exponential
family. ¢ is called dispersion parameter.

@ We assume that ¢ is known.

@ The function g that links the mean y to the canonical parameter 6 is
called Canonical Link:

g(p) =9
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Expectation

Note that

Therefore

It yields

which leads to

10 = 2 (v,
a0 Y — b(0)
R

o (%) - BN_b0)

¢
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Variance

On the other hand we have
920 [(00N?  b(O) (Y —D(0)\?
—+la) =- -
002 00 10) )

and from the previous result,

Y —b'(0) Y —-E(Y)
¢ )
Together, with the second identity, this yields

_b(0) N var(Y)

0=y T

which leads to

var(Y) = V(Y) = b"(0)¢
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Negative log-likelihood

Now we consider minimize negative log-likelihood with a penalty:

minirrﬁﬁze {—/i//l (Bo, Bry, X) + AHBH}

Bo,
where the type of norm is specified in the problem. We consider the linear
model as an example of GLM. Assuming Y|X = x ~ N(j(x),02). Then:

Ny By — Bx)? 8 — X2
E(ﬁo’ﬂ;y’x):_Z(y 6200—2 BX) —|—C:—||y ggZNB H2

i=1
where c is a constant that does not depend on Sy and 5.
Hence, negative log-likelihood is equivalent to the square error loss in this

+c

case.
Remarks on negative log-likelihood

Why? Under regular conditions, the Fisher information matrix is positive
definite, so the negative log-likelihood is a convex function of the
parameter.
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An example for classification

Suppose we take Y; € {+1,—1}, namely,
P(Yi=1)=m;,P(Yi=—-1)=1—m;, and

logit(ﬁi) = BO + B]Txi: = 17 ey 1
Then the likelihood function is

n
1
L(7|y1, s ¥Yn) = H o\
i=1 1+ < ﬂ':)
After some trivial algebras, we can get the following negative log-likelihood
function with a penalty:

Zlog( + et ) 4 N8l

Here, y; (Bg + ﬂTx,-) can be interpreted as the margin of the i-th
observation, for which positive values indicate correct classification and

negative values indicate incorrect classification.
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Case study: document classification

@ The 20 Newsgroups data set is a collection of approximately 20,000
newsgroup documents, partitioned (nearly) evenly across 20 different
newsgroups. It was originally collected by Ken Lang, for his
Newsweeder: Learning to filter netnews paper, though he does
not explicitly mention this collection. The 20 newsgroups collection
has become a popular data set for experiments in text applications of
machine learning techniques, such as text classification and text
clustering.

e Koh, Kim, Boyd (2007) analysis the data set by logistic regression
interior point method.

e Freidman, Hastie, Tibshirani (2010) use this data to illustrate their
glmnet via coordinate descent.

@ A team at Renmin U and Tsinghua U (2022) developed a Bayesian
method for classification and summerization, their work published on
Journal of Machine Learning Research.
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Case study: document classification

Table 1: Class Groups, Classes and the Numbers of Documents in Each Class

Class Class Class Name No. No.
Group Number o Training | Test

1 comp.graphics 584 389

Computer comp.os.ms-windows.misc 591 394
Science 3 comp.sys.ilbm.pc.hardware 590 392
4 comp.sys.mac.hardware 578 385

5 comp.windows.x 593 395

For Sale 6 misc.forsale 585 390
7 rec.autos 594 396

Auto & 8 rec.motorcycles 598 398
Sports 9 rec.sport.baseball 597 397
10 rec.sport.hockey 600 399

11 sci.crypt 595 396

Science 12 sci.elf:clronics 591 393
13 sci.med 594 396

14 sci.space 593 394

15 talk.politics.guns 546 364

Politics 16 talk.politics.mideast 564 376
17 talk_politics.misc 465 310

18 alt.atheism 480 319

Religion 19 soc.religion.christian 599 308
20 talk.religion.misc 377 251
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Case study: document classification

@ We have N = 11314 documents that we want to classify into two
different groups (Y € {—1,+1}).

@ The features are defined as the set of trigrams (with some
restrictions). In NLP, trigrams mean a sequence of three adjacent

elements from a string of tokens. We have p = 777811 features in
total.

@ Each document contains an average of 425 nonzero features. So this
is a sparse problem.

o We want to perform ¢; regularized logistic regression.
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Case study: document classification
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You can see that overfitting occurs when X is too small, or equivalently,
fraction deviance explained is too large, namely, the model is too

“saturated” .
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Case study: document classification

The fraction deviance explained (D3) is then defined by:

Devnuu — Dev)\

D =
A DeVnull
Sstot - Ssres
R? = =0 =0
SStot

Deviance: (Devy,) is defined as minus twice the difference in the
log-likelihood for a model fit with parameter A and the “saturated
model” (having y = y;).

Remarks on GOF statistics

It also reminds me conditional MSE in Guorong Dai’s setup:

E{(Y —g(U))*|S = s}
E{(Y = d(X))?|S = s}

So when we comparing two models, a natural choice is to find a proper
ratio of the “errors” of two models. 18/126




Computational techniques

@ With current estimate <ﬁ~0,5), we form the quadratic function:

N
1 AT )2 .
Q(5076)2N;W1 (ZI ﬁO B XI) +C</8075>7
e C denotes a constant independent of (o, 3), zi and w; are defined as:
5 yi — P (xi)
Zi:BO—i_BTXi"i'N ~ )
B (xi) (1= B (x:))

where 5 (x;) is the current estimate for Pr(Y =1| X = x;)

and  w; =p(x)(1—p(x))

@ Each outer loop then amounts to a weighted lasso regression
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Multiple outcomes

Setting

Y € {1,...,K} for K > 2 classes. There are two natural ways for reduction
to binary classification in general:
e OvO (One versus One): all (g) pairs of classes samples are used to
fit (g) binary classifiers, then the predicted class is the one which is
predicted the most.

@ OvA (One versus All): treat all other classes as a single negative
class.

Drawbacks

@ OvO: computationally exhaustive and cases where same amount of
votes for more classes.

@ OvA: imbalance amounts positive and negative observations.

v
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Multinomial distribution

@ Suppose we have nomial variable: a categorical variable that does not

have intrinsic ordering or ranking, e.g., gender, colors, marital status,
race, blood types

@ Multinomial distribution
y ~ Multinomial (71,...,mx), Y me=1

y takes values in {1, ..., K} with probability P(y = k) = m.
@ We want to model y; based on covariates x;.

yi | xi ~ Multinomial [1;{m1 (x;),..., 7k (xi)}],
K

Zwk (xi) = 1 for all x;.

k=1
Ty;

 (xi) H {mi (xi) ify; =k} = H {mh () 0=
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Multinomial logistic/softmax regression

@ View the category K as the reference level, we model the ratios of the

probabilities of category k and K

Tk (X,')

log = Bok+x' B (k=1,...,K—1)

Tk (X;)
T (x7) = mic (x7) o e

@ Denote Sk = 0 ~~ reference level

K K
Zﬂ'k (X,') =1= TK (Xi)zeﬁ°k+x'7ﬁk =1
k=1 k=1
K
— 7k (x) =1/ Z eBoktx;" Br
k=1
ePok+x;" Bi

— Tk (XI) = ‘Z;il e,BOI+XiTB’
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Multinomial logistic with penalty

@ In traditional multinomial regression, one category must be chosen as
a reference group (i.e., have B set to 0 ) or else the problem is not
identifiable ~ {8k + ¢j}K_; and {8k} K_; produce the same
likelihood
Instead of traditional multinomial logistic regression, we can consider the
following over specified version:
eBOk+ﬁ[Z—X
PlY=k|X=xX)=——"——— .
( | ) Zg(:]_ eﬁog+ﬁZ—X

@ we regularize the coefficients, and the regularized solutions are not
equivariant under base/reference changes,

o the regularization automatically eliminates the redundancy
@ The penalty term is )\Zszl | Bkl 1
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Multinomial logistic with vectorization

@ Log-likelihood form is

K
T,
log P(Y =yi | xi) = Po,y, + ﬂ},T[X; — log (Z Pok+By X') :

k=1

o Let ry = H(y,- = k) ,Rnuk = (r,-j)
e Such vectors and matrices can be stored efficiently by only storing the
nonzero values, and then row and column indices of where they occur
~+ Compressed Column Storage (CCS), ...

o We have fo, + 8, xi = S8 rik (Box + B xi)
@ Hence

K
log P(Y =i | x) = rix <50k + ﬁka,-) — log (Z eﬁ"”BkTX’)

k=1 k=1

PN
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Multinomial logistic with penalty

Then we can write the log-likelihood in the more explicit form

1 N K K ;
N Z w; [Z ik (ﬁOk + ﬁka,-) — |Og {Z eﬁok+5k X; }]
i=1

k=1 k=1

@ The weights w; are used to adjust the contribution of each
observation to the likelihood, w; = 1 by default.

@ Then for any candidate solution {Bkj}le, the criterion to resolve the
choice of ¢; is the penalty term.

K
¢j = arg min Z‘Bkj—c‘ = median {BU""?BKj}a
ceR k=1

forj=1,...,p.
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Case study: Handwritten digits

Figure: Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright.
Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015,
page 38.

@ Handwritten Digit Recognition with a Back-Propagation Network is
published in 1989.

@ LeNet-5: The first part includes two convolutional layers and two
pooling layers which are placed alternatively. The second part consists
of three fully connected layers.
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-
Case study: Handwritten digits

@ We have N = 7921 gray-scale images of p = 256 pixels representing
handwritten digits from 0 yo 9, namely, Y € {0, ..., 9}.

@ Each one of the p features represents the intensity in a [0, 1]-scale of
the corresponding pixel (0 black, 1 white).

@ We can fit a 10-classes lasso multinomial model.

@ Deep networks indeed have better performance.

Multinomial Lasso on Zip Code Data

Misclassification Error
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Computational techniques

@ Linear predictor:

eZik

_ T, I _ ) —
Zik = Pok + B xi, P:k—Pr(Y—k|X:)—m-

o Log-likelihood (without penalty):

ZZf:kZ,k Zlog (Z e ,,,,> .

i=1 k=1

@ Lasso problem:

mﬁmwﬁ +)\Z||5k”1

@ We use coordinate descent (BCD) algorithm to solve it (profiling)
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Computational techniques

@ Fix other parameters {Bok,,ﬁk/}kl#k, update (SBok, k)

eZik

K a
o Let Vi = yixZix — log (Zj:l eZ’J) and py (X,') = Zszle

° —g’éfk = Yik — Pk ()
2.
8ok = —pi (i) (1 — px (7)) = —wi

® oz;
o Heuristically, by Taylor expansion, we can derive a quadratic objective

Zjj

function as

N
Qx (50k,5k) = —% Z Wik (h,'k — Bok — BIZ—XI)2+C ({BOkaBk}f:1> ’
i=1

where C denotes a constant independent of (Sok, Bk), and

hix = Bok+ B xi+ 5 (};"k) (_lli( 1(5?2&')) and wix = pr (xi) (1 — Pr (xi))
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Count outcomes

@ A random variable Y is Poisson(\) if its probability mass function is

k
P(Y = k) = e A2

T (k=012
e If Y ~ Poisson(\), then E(Y) = Var(Y) = A.
e If Yi,..., Yk are mutually independent with Y} ~ Poisson (Ax)

Y1+ -+ Yk ~ Poisson(}),
A A
(Y1,...,Yk) | Y1+ -+ Yk = n ~ Multinomial (n, <)\1,,;>),

where A = A1 + -+ 4+ k.
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Some extensions of Poisson distribution

@ The Poisson distribution restricts that the mean must be the same as
the variance. It cannot capture the feature of over-dispersed data
with variance larger than the mean.

@ Negative binomial distribution: a scale-mixture of Poisson.

L T(k+0) 0 \°( un \* B
P = 0= oy (ova) () » (k=012

with E(Y) = p and Var(Y) = pu + u?/6.

o Zero-inflated Poisson: a mixture of Poisson and point mass at zero.

P(Y = k) = {p—i—(l—p)e"\, ifk=0

S l=pe Ry, ifk=1,2,...

E(Y)=(1—-p)Xand Var(Y) = (1— p)A(1+ pA)
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Poisson regression model / log-linear model

N = AX,B) = XA,
E(YI ‘ X,) = var(Y,- ’ X,) = eﬁo-i—X,-T,B'

{Y,- | Xi ~ Poisson (),

@ This model is also called log-linear model
log E (Yi | Xi) = fo + X;'
@ Interpretation: conditional log mean ratio

E(Y|...,X;+1,...)
E(Y:|..., X5

log

:ﬁj
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Poisson regression with penalty

o Likelihood:

n

L) =1] e—AfA—'Y: x H e NN
i=1 Yir 4
l0g L(B) = >~ (=X + yilog \) = > (=7 + (5o +x78))

i=1 i=1

e The penalty term is AJ|5]|1.

L5 (7)) A

o . Bot BT x =
o Take derivatives on 3y and set it to zero ~» % Z,N:1 ehth xi — g
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Poisson regression for rates modeling

@ If observation windows have different lengths T;, then
Elyi | Xi =x] = Tip(x)

where p (x;) rate per unit time interval.
@ 6 months ~ yearly visit to doctor has T = 6.
°
logE[Y | X =x,T] = log T 45+ ' x
——
“offset”

@ The terms log T; for each observation require no fitting, and are
called an offset.
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Case study: distribution smoothing

e N count variables {yk}f(vzl coming from a N-cell multinomial
distribution.

°or= {rk}val = {yk/ 221:1 yk}:I . vector of proportions.

@ Issue: r could be sparse. Want to regularize it toward a more stable
distribution u = {uk}f(vzl.

N

N
L gk
minimize gx log () such that ||q — rl|ec < 6, gk =1
s >~ (& fa=rlhe <53

Kullback-Leibler divergence

o We want a distribution g which is approximately equal to our
observed proportions but at the same time as close as possible to a
nominal distribution wu.
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Case study: distribution smoothing

Why this problems falls in Poisson model framework?

@ The previous minimization problem minimize ZLV:1 qx log (%) such
qeRN’quO k

that ||q — r||e < (5,22’:1 gk = 1 has Lagrange dual

N
maximize Z Fic [Iog ug + Po + ok — ukeﬁo‘mk] —d||a|1
Bo,c -1

e This is equivalent to fitting a Poisson model with offset log uy,
individual parameter ay and design matrix X = [yxpn.
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Case study: distribution smoothing

0.02 0.03 0.04
|

0.00 0.01

Figure: Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright.
Statistical learning with sparsity
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Time-to-event data

@ Survival analysis in biostatistics

o QOutcome denotes the Survival time or the time to the recurrent of the
disease

@ Duration analysis in econometrics

o Outcome denotes the weeks unemployed or days until the next arrest
after being released from incarceration

@ Time-to-event-data

e Non-negative
e May be censored, resulting in inadequate tail information
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Survival function

@ Medical studies interested in time to death T of sick patients, usually
characterized by the survival function S(t) :=P(T > t), the
probability of surviving beyond a certain time t.

@ Some patients drop out the study or die because of unrelated causes:
we call this situation a censoring time C.

e Y :=min(C, T) is the observed outcome variable, together with an
indicator 0 := I{Y = T} of whether the patient died correctly
(because of the studied illness).
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Hazard function and Cox model

@ Hazard function: Instantaneous probability of death at time t, given

survival up till t.
. P(Ye{t,t+6}|Y>1t) f(t)
h(t) = | —
(t) = lim 5 5()

where f(t) density of T.
@ Cox’s model treats special cases of hazard functions:

h(t]x) = ho(t)e®

where x represents e.g. gene expressions and ho(t) is baseline
hazard: hazard for one individual with x = 0 ~» semiparametric
@ The coefficient § represents the multiplicative effect of the covariates
on the hazard
h(t‘--- ,Xj—i-l,-")
(e %),

= &% ~» hazard ratio (HR)
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|
The hazard of hazard ratio (Hernan, 2010)

@ Treatment Z; and time-to-event outcome Y.
@ Hazard: the event rate at time t conditional on survival until time t
or later
. P(t<Y<t+AtlY >t)
lim .
At—0 At
@ Survival analysis assumes models for hazard, e.g., Cox models,
additive hazard models, etc.
@ Hazard ratio between the treatment and control compares

P(t<Y(1)<t+At|Y(1)>t) P(t<Y(0)<t+At|Y(0)>t)
At ’ At

limat o limat o

which compares the populations {i : Y;(1) > t} and {i: Y;(0) > t}.

Hazard ratio has a built-in selection bias.
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-
Risk sets and partial likelihood

@ Go back to the Cox model.
h(t]x) = ho(t)e?

@ Denote by R; :={j | yj > yi} the risk set of subject i (individuals
which are still in the study when subject / dies).

e Cox (1972; 1975) proposed the partial likelihood. He argued that only
a part of the likelihood is useful when we are interested in the
parameter (3 only

@ The partial likelihood of subject i is given by
hilx) e

Note that baseline hazard hg has no effect here, does not depend on
actual death times
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-
Interpretation of Partial Likelihood

@ Let the “event” = “die” for convenience

@ The probability that a subject with covariate value X(;) dies at time

tj, given that one and only one subject in the risk set R; dies at time
t;, is
J1

P(subject with X dies at time t;|dies in R; but don't know who)

P(subject with X(;) dies at time t; | survives to time t;)

P(dies at time t; and know in the risk set R; | in the set R; survive to time t;)
__ h(1Xp)
5o, F5IX)
e X0
:ZieRj e? X
@ We sequentially consider in time order ty, to, ..., tx and then we obtain
the likelihood L,(f)
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-
Cox model with penalty

The log-partial-Likelihood is

BT

e

lp(Bix,0) = E log [M]
JER;

5i=1

died " correctly”

with corresponding ¢1-penalized CPH problem:

m|n|m|ze Z log [Z

+ Al
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-
Case study: lymphoma data

@ We want to estimate the hazard function S for N = 240 Lymphoma
patients with p = 7399 variables measuring gene expressions. 102 of
these samples are right censored, i.e.

Y =min(T,C)=C
@ They use the ¢/1-penalized CPH problem to find B()\m;n).

0 69 13 139 154

04 02 00 02 04 06 08
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Case study: lymphoma data

154 139 124 105 8 69 50 36 25 20 11 7 4 3 0

Partial Likelihood Deviance

................

30 25 20 15
Log(2)

@ Simon, Friedman, Hastie and Tibshirani (2011) give details for an
algorithm based on coordinate-descent

@ Implemented in the R package glmnet
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-
Kaplan-Meier estimator

We use the Kaplan-Meier estimator of survivor function S(t) : let
A(x) = B (Amin )" x, then

eﬁ(xi)

iyi<t 2 jer, i)

is an estimate of S(t). We use these in the following plot.

In computing the score 7) (x,)( ) for the observations in fold k, we use the
coefficient vector 6 —k) computed with those observations omitted. Doing
this for all K folds, we obtain the " pre-validated” dataset

{209 )}
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Pre-validation

@ The Cox model is a semi-parametric model, and the proportional
hazard assumption is crucial.
@ The proportional hazard assumption is not always satisfied, and the
Cox model may not be the best choice.
@ Pre-validation is a method to check the proportional hazard
assumption.
@ The idea is to split the data into two parts,
@ one part ~ Xx; .
e the other part ~» (K
e repeat for k =1, ..., K folds
o obtain the pre-validated dataset {(7(x;)%), y;,6:)}V,
@ If the proportional hazard assumption holds, the estimated
coefficients should be similar.
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-
Case study: lymphoma data

@ Log-rank test is used to formally test whether the survival curves are

statistically different

Kaplan-Meier Estimates (naive) Kaplan-Mei i (P
e o
= Pred >0 =
Pred<=0
— Overall
o | o |
e o
5 o 5 o
b B p=0.00012
£-° g <
o a
£ 34 g < |
s S s S
2 s
@ @
o o
ad =
o | .
° o
T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Time Time

or
[)/é‘dlLtLU ns |fr

nal hazards lasso model, selected by cross-validatTom. A0
s chosen by cross-validation, the predictions are

phoma data. In thc lc_ft plot, we ae_r/mcnt the duta based on th
the Cox proporti
g paramets
g set, and are overly optimistic. The right panel use.
a prediction on the entire dataset, with this training-set bias removed. Alt

separation is not as strong, it is still significa L i dicate censoring times.
The p-value in the right panel comes from th¢ log- mnk test.
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Support vector machine

Bo+pTx=0 N
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-
SVM: A toy model

o Suppose we have a classification rule : {x : f(x) = o + x" 3}, here
x = (x1,x)" € R
@ Consider the following lines:
h: Bo+ Bixi + Paxe =1,
I-1: Bo + Brx1 + Paxo = —1
lo: Bo+ Bix1 + Faxz = 0.
@ Then, by geometry,

1 1
d(lo, h) = d(lo,I-1) =

[ +m I8l

@ So if the dataset is linear separable, by setting the closest point x; to
the classification boundary Iy as f(x;) = 0, we have 35y, 8 such that

>0, ify, =41,
<0, ifyj=-1.

f(xi) =
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-
SVM geometric interpretation

Consider the Boundary B = {x € RP | f(x) = 0}, where

f(x) = Bo+ B x

Then the distance between the boundary and the point xp is

. : |f (x0)|
dist (xg, B) = inf ||z — x|, =
( 0 ) zGBH 0”2 ||/8||2

So we find that the optimal separating plane f*(x) = 0 has margin

if I )
M;:max{ min y(Xﬂoﬁ)}
o8 lie{tny |82
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]
SVM with slack variable &;

We allow some points to be misclassified, and introduce a slack
variable £ = (&1, ...,&p), & > 0 for each observation.

e yi(fo + x,.TB) represents the “distance” of x; to the classification
boundary ~~ a linear classifier is scale invariant, the solution
coefficients can be rescaled, WLOG, we can set ||| =1

e Foundamentally, we want y;(8o + x;' 3) > M,

@ But we allow some points to be misclassified, so we relax the
constraint to y;(Bo + x. 8) > M(1 — &).

Z,N:l & < C will introduce a bias-variance trade-off:
e C = 0: hard margin SVM, no misclassification allowed,
o C large: wide margin, introduce large bias and low variance in
classification,

e C small: narrow margin, introduce small bias and high variance in
classification.
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|
Optimization problem of SVM

@ Denote M as half width of the yellow part in the illustrator as the
margin of the classifier.

o Objective:
max M
Bo.B{&HY,
o Constraints: y; (Bo + BTX,-) > M(1-¢&;),Vi, where

f(xi,80,8)
&>0Vi, XN &< C Bl =1

@ Note that by the constraints, we have
& > 1—yif (xi,50,8), & >0.
so N & >N (L — yilBo + BT X))+
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|
Optimization problem of SVM

@ By writing the Lagrangian equivalent of the original minimization
problem (SVM), we get:

N
minimize {Ii/ Z [1 - yif (x; Bo, B)],. + )\HﬁH%}
i=1

Bo,B

Decreasing A corresponds to decreasing C and
f(xi; Bo, B) = Bo + BT x;.

e Hinge loss [1 — y;f (x; Bo, B)],. is zero when if x; lies on the correct
side of the margin. For data on the wrong side of the margin, the
function’s value is proportional to the distance from the margin.

@ /1 penalized version:

m|n|m|ze{ Z[l—y, xi; Bo, )]++)\H31}.
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N
RKHS and kernel trick

Kernel

Let X be a non-empty set. A function k: X x X — R is called a kernel if
there exists an R-Hilbert space and a map ¢ : X — H such that

Vx,x' € X,

RKHS
Let H be a Hilbert space of R-valued functions defined on a non-empty
set X. A function k: X x X — R is called a reproducing kernel of H, and
‘H is a reproducing kernel Hilbert space, if k satisfies

o Vxe X, k(,x)eH,

o Vx € X, Vf € H,(f, k(-,x))u = f(x) (the reproducing property).
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Examples of kernels

If K(x,y) = ({x,y) + ¢)> = (a1 + xey2 + €)% = (®(x), ®(y)), then
®(x) = (x1, %2, V2cx1,V2cx0,¢) T

@ There are many other kernels,

Polynomial kernel: K(x,y) = ({x,y) + c)?,

Gaussian kernel: K(x,y) = exp(—||x — y||?/20?),

Laplacian kernel: K(x,y) = exp(—||x — y||/o),

Sigmoid kernel: K(x,y) = tanh(x(x,y) + 0).

The linear SVM can be generalized using a kernel to create nonlinear
boundaries.

1Bll2 ~ 118l

@ We'll revisit this variation in Group Lasso

(]
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SVM vs logistic regression

@ Penalized logistic:

N
1
minimize N Z log (1 + e_y"f(x"’ﬁo’ﬁ)> +A|18]]

Bo,B

i=1 ~~

logistic loss

@ Penalized svm:

N
1
C e 1— if : Bo, A
ml%%lze N ,-E_l[ yif (x; Bo, B)] +Al Bl

hinge loss

@ Data is separable: there exists a hyperplane that separates the two

cases. In this cases logistic regression has a problem:
eﬂ0+BTX
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Problem of logistic regression

Problem: When p > N, the points are almost always separable.
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Relationship between SVM and logistic regression

Consider the problem

N
1
inimize { — log (1 4+ e YifCiBoB) ) L\ (1312
mininiz { v ) +AlBI
Let (50(/\),5()\)) be the solution, then Rosset et al. (2004) showed that

_ { - yif (XiaBO(A)7B()‘)) }
M3 = lim min =
A—0 ) ie{l,...N} 1B(M]2

So for A — 0 we have that the />-regularized logistic regression
corresponds to the SVM solution.
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Relationship between SVM and logistic regression

In particular, if (ﬂvo,ﬁv> solve the SVM problem for C = 0, then we have
that:

BNy
lim ———— =
B =

Note that the division by the ¢> norm of 5()\) makes sure that the solution
on the SVM problem does not blow up.
@ As A — 0, logistic regression and SVM solutions coincide

@ SVM leads to a more stable numerical method for computing the
solution in the solution is most dense

o Logistic regression is more useful in the sparser part of the solution
path
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o Elastic net
@ Group lasso/overlap group lasso

@ Fused lasso

Part Il

e
0
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Case study: comparison of lasso and elastic net on highly
correlated variables

In microarray studies, groups of genes in the same biological pathway
tend to be expressed (or not) together, and hence measures of their
expression tend to be strongly correlated.
Simulation setup
© 2 sets of 3 variables, pairwise correlations around 0.97 in each group
@ sample size: N = 100,

@ data are simulated as follows:

Z1,Zy ~ N(0,1) independent

Y =32 — 152, +2, e~ N(0,1)
Xi(j=1,23)=21+¢/5 & ~N(0,1)
Xi(j =4,5,6) = 2>+ /5, &~ N(0,1)

v
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Case study: comparison of lasso and elastic net on highly
correlated variables

ClassicalLasso 5 o 5 Elastic Net (alpha=0.3)

o
Coeftcents
00 05
\
/\
//

o 1 2 3

L1 Nom

Figure: The lasso estimates ( « =1 ), as shown in the left panel, exhibit
somewhat erratic behavior as the regularization parameter A is varied. In the right
panel, the elastic net with (o = 0.3) includes all the variables, and the correlated

groups are pulled together.
64126



Case study: comparison of lasso and elastic net on highly
correlated variables

!

1

-05 00 05 10 15

-05 00 05 1.0 15

Coefficients ‘«:JJ
Coefficients «:JJ

5
-15

1181 1181

@ lasso estimates exhibit erratic behavior as A varies: one variable is
excluded and the correlations among variables are not clear

@ elastic net includes all variables and correlated groups are pulled
together, sharing values approximately equally.

o the difference between my plot and the book’s plot is due to the

random seed. 65 /126



Elastic net

Recap, the elastic net problem is defined as

S 1Y T \2 1 )
DA {2 > (=0 —xT8)" +3 |- )15 + a3l }

@ Denote R as the objective function of elastic net, then for 3; > 0,

aﬁJ NZ( ~Bo— X[ B) (=) + A[(1 — )3 + ovsan (5)

Z(yl Bo — lekﬁk XUgJ —Xjj) + ...

k#j

=rj

ZrUXU+ ZX BJ+A[1_Q)Bj+aSgn(ﬁJ)]
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Elastic net

@ Setting the derivatives to zero yields

ZX + A1 —-a)

As we did in lasso case, here coordinate descent have a close form
update for each f3;.

N
1
Bj + aisgn(B) = N Z rijXij

- Sxa (Z,’-V—l finij>
ZI 1 U + >\(1 - Oé)

j pu—
where rj = y; — o — >4 ;i ik Bk and S,(z) = sign(z)(z — p)+
@ In practice, group structure may not be as evident as the previous
‘ideal’ model, this example does capture the main idea of elastic net.

@ By adding ridge penalty to lasso penalty, elastic net automatically
controls for strong within-group correlations.
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Elastic net

Figure 4.2 The elastic-net ball with o = 0.7 (left panel) in R*, compared to the
0y ball (right panel). The curved contours encourage strongly correlated variables to
share coefficients (see dmonoiitmpubufatiadatailet the following pages for details
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-
Why does elastic net promote grouping?

Grouping effect (Zou and Hastie, 2005)

Given data (y, X) and penalty parameters (A1, A2), the response y is
centered and the predictor X are standardized. Let 5(A1, A2) be the naive
elastic net estimate. Suppose that (A1, A2)5j(A1, A2) > 0. Then

T , 1
Dy, 2, (1,7) = 7= |Bi (A1, A2) — B ()\17)\2)‘ < —v2(1-p)
lyll2 A2

where p = x.” x;, the sample correlation.

The unitless quantity Dy, ,(/, /) describes the difference between the
coefficient paths of predictors i and j. If x; and x; are highly correlated,
i.e. p~1 (if p~ —1 then consider —x; ), grouping effect says that the
difference between the coefficient paths of predictor i and predictor j is
almost 0
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Grouping effect

Consider the overall minimization

minly — XBI + M8l + XallB].

L(8)

Then the optimality at 8; and f3; is

S5 = —2x] (y — XB) + 2028 + A1 sgn (8;) = 0
% = —2ij (y = XB) +2X28; + A1sgn(B;) =0

Substracting the two equations, we have

xi) (y — XB)+ 2% (B — Bj) + M1 | sen (Bi) —sen (B) | =0

=0, by assumption

2 (xj —
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|
Grouping effect (cont'd)

By the previous equation, we have

(Bi — Bj) = /\12 (xi — Xj)T (y — XB)

Then, we have

1
(Bi — 6;)? <z lixi - x;|[*ly — XB||> (by Cauchy)
2

Then we can bound the inequality by parts. For ||x; — xj||2, by centered
dataset, we have ||x;||2=1,i =1,...,p and x; x; = p, so

Ixi — xil|* = [Ixi]]> + lIxi]1> — 2% x; = 2(1 — p).
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|
Grouping effect (cont'd)

For |ly — X3||?, by optimization,
ly = XBI13 + A8l + 22lIB13 = L(B) < L(0) = |lyl3-

then,
ly — X8B3 < llyll3 — MBIl — 21815 < |y 3

Combining all the upper bounds, we have

1
8= B < V2= Pyl

which completes the proof.
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Quadratic Form

Assume the design matrix has two centered and standardized columns,
with inner products given by

Xirxlzxg—Xg:l, X1TX2:p, —-1<p<1.
For the coefficient vector 8 = (1, BQ)T, the squared error can be written
as a quadratic form

L(B) = %Hy — XB|3 = ! (5 — BOLS)T G (5 - 30LS> + const

2
where the Gram matrix is

G:XTX:<1 p)
p 1

and the contours of the loss function, centered at BAOLS, are given by the
equation

(ﬂ - BOLS)T G (5 — ﬁAoLs> = const .
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-
Eigenvalues

Perform eigen-decomposition of G. Solve for eigenvalues u:
1—p P ) 2 2
det(G — pul) = det =(1- —p-=0.
(G —pul) < PR T Bl G DRty
The solutions are
pm=1+p, po=1-p

The corresponding (unnormalized) eigenvectors can be chosen as

v = <1> (in the direction y = x), v(? = ( ! > (y = —x) .

-1
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-
Ellipse

In the eigenvector basis, let u = QT (B — BAOLS), where @ is composed of
the unit eigenvectors as columns. The quadratic form becomes

(B—B)"G(B~B) = p1u} + pou.

Fixing the level = ¢ (i.e., the contour), we obtain the ellipse equation

u? u3 1
c/pm - c/u2

From this, the semi-axis length in the i-th eigenvector direction is \/c/ ;.
Thus, the smaller the eigenvalue, the longer the semi-axis in the
corresponding direction. Noting that up =1 — p & 0, the semi-axis in the
y = —x direction is very long, and the loss function changes slowly in this
direction. In other words, if the two variables are highly correlated, their
coefficients can vary over a wide range with almost no change in the loss

function value.
75 /126



Grouping effect: an illustration

High correlation case (grouping effect visible)
rho=0.90, lambdal=0.8, lambda2=0.5

30: EN solution approx: (0.777, 0.534)

beta2
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Grouping effect: an illustration

Low correlation case (less grouping)
rho=0.10, lambdal=0.8, lambda2=0.5
30- EN solution approx: (0.831, 0.003)

beta2
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Group lasso

An example for group lasso

Genes and proteins often lie in known pathways, an investigator may be

more interested in which pathway are related to an outcome than whether
particular individual genes are.

@ Groups of covariates should be selected into or out of a model
together

@ Desirable to have all coefficients within a group become nonzero (or
zero) simultaneously

We use group lasso penalty (Yuan and Lin, 2006) for such situations.

pelpp o

ZZZ! 1T E=E
L — S e —
6 i O Oy
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Group lasso

o Consider linear regression model involving J groups of covariates,
where j =1,...,J
o Vector Z; = (X1, ...,ijj)T € RP/ represents the covariates in group
o p; does not need to be the identical for all j
@ Goal: predict real-valued response Y € R based on collection of
covariates (Zi, ..., Z))

o Linear model E(Y|Z) takes the form 6y + Zle ZjTHJ-, where 0; € RPI.
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Group lasso

Given a collection of N samples {(y;, zi1, zi2, - - .,z,-J)},’-V:1 the group lasso
solves the convex problem:

N

2
J J
L 1 T
minimize EZ yi—90—22i19j +)\§;||9j”2
Jj= J=

CRP]
00€R,0;€R P

Where /6|, is the Euclidean norm.
This is group generalization of the lasso with properties:

@ Depending on A > 0 either the entire vector éj will be zero, or all its
elements will be nonzero.

@ When p; =1,j =1,...,J, then we have ||6;||, = |6;], so reduces to
the ordinary lasso.
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Lasso vs group lasso

If B is individually sparse, then very likely all [|6;]|, will have value. But if
B is group sparse, then only a few groups [|6;]|, is activated. J

Group lasso penalty:

Lasso penalty: ° 3=(61,....0,)
° |B1 = JI'J=1 18;, @ By notation ;buse, denote
5 [Bll2,1 = >_;_; [|0]2, denote
® £ s sparse. 6 = (611, 16.]]2).

@ 0O is sparse.
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An unit ball example for group lasso penalty

5 By
\‘ “ ‘\ ' Q
By 3

group lasso lasso ridge

o Left unit ball can be characterized as /8% + 33 + |B3] < 1
e Middle unit ball can be characterized as |51]| + |52 + |53] < 1

e Right unit ball can be characterized as /3% + 55 + 33 < 1
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-
Multilevel factors in regression

@ A predictor can be a categorical factor with multiple levels.

@ Example: one continuous predictor X and a 3-level factor
G ¢ {glag2,g3}-
@ Model for the mean:

3
E(Y | X,G) =XB+ ) _ 60,l[G]
k:l

@ Interpretation: regression in X with different intercepts depending on
G.
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Dummy variable representation

Introduce dummy vector Z = (Z1, Z», Z3), where Z; = 1;[G].

Model becomes:

E(Y | X,Z)=XB+2Z70, 6= (01,02,03).

If G has no predictive power = 6 = 0.

Otherwise, coefficients in § are typically nonzero.
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General form with multiple factors

o With multiple group variables Gi, ..., G,:

J
E(Y | X,G1,....,G))=Po+XT3+> ZT0
j=1

@ Variable selection often done at group level, not individual
coefficients.

@ Group Lasso is designed for this purpose.
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Aliasing and coding issues

@ In unpenalized regression, dummy variables in a set sum to one

J
E(Y | X,G,....G))=Po+ XTB+> ZT0
j=1
@ This causes aliasing with the intercept (unidentifiable)

e Usual fix: use contrasts (e.g., sum-to-zero coding)
e With group lasso:

e No aliasing concern due to ¢, penalties
o Penalty enforces coefficients in a group to sum to zero
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Group-lasso and factors

@ Problem:
o1 N 7, \2

o If group j is a factor coded by dummies with ", z; x = 1 for each i,
then
at optimum ITGJ =0

@ Proof idea: for any scalar c replace 0y — 6p + ¢, 0; — 6; — c1. This
leaves residuals unchanged but changes the penalty. Choosing

179, .. . .
¢ = =~ minimizes |[6; — c1||2 and forces the group coefficients to
J
sum to zero. So optimal 6; must have zero sum.
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Multitask learning with group lasso

Multivariate response Y € RV*K | predictor matrix X € RNV*xP,
Matrix of coefficients ® € RP*K with, matrix of errors E € RV*K,

Y € RX may be correlated, for example, taking Y as K movies
ratings of N users, then the ratings of different movies are correlated.

Goal: estimate ® by minimizing the following objective function:

N -
”ggﬁ@lzxe §\|Y—X®”2F+)‘ g“gj“z

where ||A|lF = \/an:l doim1 |ag . 0% is the jth row of ®, which
means the coefficients of the jth task.
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Multitask learning with group lasso

e If we only use Z 1Zk 1 1©jk|, namely, ||®]|1, then we have no way
of controlling group sparsity.

° Zj’.’_l ‘ 91’. can do group sparsity because once the j™ row is
= 2
actuated, all elements on the row are activated.

K

— _2__&[/\ 9 CR,
pxK

)—‘tl/\. vow

\\ @LEH{f , -t slwna
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Computation for group lasso

We ignore the intercept and rewrite the optimization problem as follows:

J

2
J
y=>_Z6;| +x>_|6jl,
j=1

j:]- 2

min

(601,.--,9))

N~

By taking sub-derivative on the objective function and letting the
derivative to be zero, we have the following estimating equation:

J
~Z7 |y =Y Zi0; | + 15 =0,
j=1

R ’ if 0; # 0
where & € 9[0;[l> = { ATz "6 70,
any vst. [[v]2 <1, if6;=0.
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Computation for group lasso

Denote rj = y — Zk# Z,.0y, then we have the estimating equation
T A A
27 (5-2) 129 -0

By coordinate descent lemma, we have

-1
A Tz 2 Tr. i Trlls >
b={(F5emEn) Fm oz

0, otherwise.

This is not a closed form solution, one can use iterative methods to solve
the equation, or add some assumptions on Z;j, for example, if Z; is
orthogonal, then the solution is closed form.
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Computation for group lasso

o We have
-1

v zZ7n (1270 = )

1)

@ Further assume that Z; is orthonormal, then Z]TZJ = I, we have

b=\2"z+

=12 ) 2

T,.
|27,
+
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Computation for group lasso with dummy variables

@ For a factor with p; levels, the dummy matrix Z; has columns that are
level indicators.

@ Then
ZZ; = diag(nj1,. .., njp),

where nj , = number of observations in level k.

@ Without normalization, groups with many observations produce larger
values of ||ZJ-Tr||2 and are more easily selected.

o Normalization (ZJTZJ = ) ~~ standardize dummy columns (divide by

Vk)
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Sparse group lasso

@ When a group is included in a group-lasso fit, all the coefficients in
that group are nonzero.

@ We want sparsity both with respect to which groups are selected, and
which coefficients are nonzero within a group ~~ variation of group
lasso, called sparse group lasso

An example for sparse group lasso

Although a biological pathway may be implicated in the progression of a
particular type of cancer, not all gene in the pathway need be active.
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Sparse group lasso

In order to achieve within-group sparsity, augment with additional
{1-penalty, leading to the convex program:

2
J

J

. 1

minimize ¢ > y=Y_Zb| +X>_[@-a)llojll,+ o] ¢
CTRPj ° ,

{QJERJ}J':I Jj=1 2 Jj=1

where a € [0, 1].
o a =0, reduces to the group lasso.

@ « =1, reduces to the lasso.
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Sparse group lasso constraint region

The group-lasso ball The sparse group-lasso ball

B3

o Left unit ball can be characterized as /3% + 33 + | 33| < 1.

@ Right unit ball can be characterized as

(1 —a)y\/BF+ B3 + a(|f1] + 1Ba]) + (1 — @)|B3] + B3] < 1.
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Overlap group lasso

@ Sometimes variables can belong to more than one group.
@ Genes can belong to more than one biological pathway

@ For example, we divide 5 variables into 2 groups,

VAR (X13X2?X3)a Z; = (X3,X4,X5).

o If we simply replicate variable X3, then use group lasso ~~ X3 will be
selected to the model with higher probability

e If we simply replicate parameter then use sparse group lasso ~~ X3 will
be selected to the model only when both two groups are selected

@ So replicate variable is preferred.
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Overlap group lasso

@ v; € RP is a vector which is zero everywhere except in those positions
corresponding to member of the group j.

Vi C RP subspace of possible vectors.
For X = (X1, ..., Xp) the coefficient vector is given by 5 = Zle v
@ The overlap group lasso solves the problem:

J J
e 1
minimize, ey, j=1.....J 3 y—X Zl/j +>\Z\|yj||2
— 2 ;] —

Jacob et al., (2009) showed that, the equivalent optimization problem
can be put in the form:

_ 1 2 .
mlgé?g’!ze {zHy — XB5 + )\Qv(ﬂ)} . () = '”f Z 1%l

J

j=1
52,1”1
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N
Basis functions

@ Suppose for the moment that we have just a single feature X and we
are interested in estimating E(Y | X) = f(X)

@ A common approach for extending the linear model f(X) = X[ is to
augment X with additional, known functions of X :

M
f(X) = Z Bmhm(X)v
m=1

where the {h,} are called basis functions

@ Because the basis functions {hp,} are prespecified and the model is
linear in the new variables, ordinary least squares approaches can be
used (at least in low-dimensional settings)
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Basis functions

@ Polynomial regression
e Not only does this introduce bias, but it also results in extremely high
variance near the edges of the range of x
o Runge’s phenomenon
@ local basis functions, which ensure that a given observation affects
only the nearby fit, not the fit of the entire line~~ splines
o Cubic splines
o Natural cubic splines
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N
Additive models

Additive models

Additive models are based on approximating the regression function by
sums of the form:

J
f(X):f(X]_,...,XJ)QﬁZf}(Xj), fieF, j=1,...,J

@ Fj are fixes set of univariate function classes
e Each F; assumed to be a subset of L2 (PP))

e P} is the distribution of covariate X; equipped with squared L? (P;)
norm

16115 := E [£7 (X)]

@ Some theoretical results need F to be the Sobelev class of functions
on [a, b]. (Buhlmann and van de Geer, 2010)
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N
Additive models

Best additive approximation to regression function E(Y | X = x) solves
problem:

2

J
sounimize B\ Y = ; FOG) | | FCl®).i=1,...J
The optimal solution (ﬁ, ceey ﬁ,) is characterized by the backfitting

equations:

O =E|Y =Y A(X)|X=x|, forj=1,...,J
ki

or fi = Pi(Y = Ly (X))
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Partial Residuals and Backfitting for Linear Models

The general form of a linear regression model is
. . P
E[Y | X =5 =fo+5-%=3 fpg
j=0

Suppose we don't condition on all of X but just one component of it, say
Xk. What is the conditional expectation of Y ?

E[Y‘Xk:Xk]:E[E[Y|X1,X2,...Xk,...Xp]‘Xk:Xk]

p
=E > BiX | X = x
=0

= Bixk +E Z/Bjxj | Xie = X
jk
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|
Partial Residuals and Backfitting for LM /GAMs

Rearranging gives

Bk =BIY [ Xe=x] —E | Y BiX; | X = x
i#k
=E Y = X 8X | | X =x
J#k
The expression in the expectation is the k™" partial residual. Let's
introduce a symbol for this, say Y ().

Brxk = E {Y(k) | X = Xk]

~> Gauss-Seidel type of algorithm for fitting linear models.
“a popular version of coordinate descent is known as backfitting and is
used to fit generalized additive models”
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|
Sparse additive models (SPAM)

@ For A\ > 0 type of k best sparse approximation:

2
minimize E | [ Y — fi (X
feFi=1,..J Z i (X))
|5/=k jes
where S C {1,...,J} ~> 0-norm constraint on the number of nonzero

components

@ SPAM combines ideas from sparse linear modeling and additive
nonparametric regression

J 2 J
minimize {E || Y =) £(X)) +AY il ey NIFll, = VEIF (X)]
fi€F;=1,..., J = =

This idea was originally proposed by Ravikumar et al. (2009)
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|
COSSO

@ COSSO method uses combination of the £1-norm with the Hilbert

norm:
11,1 : Z £l

@ COSSO's objective function is given by

J

2
N J
L NZ Y= 60q) |+ 16l
J- EARRE] — J:1

Jj=1

e By Pythagorean theorem, the j* coordinate function E in any
optimal COSSO solution can be written in the form
fi() = SN 0;R; (-, x;), for a suitably chosen weight vector
0; c RN ~s dimension reduction

e Gram matrix R; € RN*N with entries (R; )i =R (x,-j,x,-/j)
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|
COSSO with RKHS

i=1 i’=1
N N .

=" " 0460R; (x5, xv;) = 6] R6;
i=1i'=1

@ The COSSO optimization problem can be written as

2
J J
1
minimizeg cpn j—1 N y—ZRjej —i—TZq/OJ-TRJ'OJ'
=1 , =t
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Computational techniques for COSSO

e Introducing v € R?, an equivalent formulation of COSSO is
2

N J
feH,,Jl J NZ vi= 1 () Z ||f||H+)‘Z’YJ

v>0 J=1

o if we set A\ = 72 /4 ~~ equivalent to original COSSO formulation

alternates between two steps
© For v fixed, the problem results in an additive-spline fit

@ With the fitted additive spline fixed, updating the vector of
coefficients v = (71, ...,7J) amounts to a nonnegative lasso problem.

g = R0;/7; € RN, where f, = R;6;

1
ing —|ly — GY[l3+ A
mig {11y = 613 + Aol

v
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Multiple Penalization

@ Multiple ways of enforcing sparsity for a nonparametric problem.
(SPAM backfitting, COSSO).

@ SPAM backfitting base on a combination of ¢/1-norm:
Fllw = 355 16l with (16117 = & 5720 72 ()

@ COSSO method uses combination of the £1-norm with the Hilbert

norm: y
Il = Il
j=1

Instead of focusing on only one regularizer, one might consider the more
general family of estimators

2
J J

f0q) |+ M) il +An D Ifilly
j=1 j=1

™3
25
=~
M=
<
|
M-
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Why Multiple Penalization?

Two Penalties in Sparse Additive Models

. — 2
L(F) =53 > (i =7 = f0)" + Al Flla + pall Fll
i=1
d
O [[flln1 = 2 jmy Ifill2(m

o Encourages sparsity: many f; are set to zero.
e Controls model selection when d > n.

d
O [[fllna = 22— IfillA;
o Encourages smoothness: prevents overfitting in each f;.
e Controls function complexity via RKHS norms.
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Impact of Each Penalty

Impact of Each Penalty

@ Only sparsity penalty: selects variables but risks wiggly, overfit
functions.

@ Only smoothness penalty: yields smooth fits but many irrelevant f;
remain nonzero.

@ Both penalties: balance variable selection & smooth estimation,
yielding minimax-optimal rates.
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Fused lasso

The fused LASSO (signal approximator) solves the problem
n n n
mi(?ei%nize {Z (Yi —0;)> + M Z 160i] + A2 Z |0; — 9,-_1]} .

i=1 i=1 =2

More generally one can use the penalty
X2 16i - 61,
i~j

where ~ is a relation depending on the problem at hand.

o Fused term : > , |6; — 0;_1| ~» encourages neighboring coefficients
0; to be similar

@ Lasso term : > ; |6;| ~ encourages sparsity in the coefficients 6;
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Variation of fused lasso

Consider the Fused LASSO with a constant term 6y, which means:

n

. N . 1 ) n n
g;:gL(@o,e) S ?'252(” — 0 — 6;) +)\1;|«9,-| +A2;|e,- — 04,

0 .
’ i=1

Then we can get bo by directly differentiate L by 6, get:

1Y 1 L
90—N;}4‘—N;9i-
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Variation of fused lasso (cont'd)

We conclude that
Median (0;,1 <i < N) =0.

Since if Median (6;,1 < i < N) = m # 0, we can change all of the 6; to
0; —m, 1 <i < N and change 6 to g + m, making the median to 0 and
get:

L(00+m,9—m-1)
N

N N
= (= (Bo+m)—(0i —m)>+ A Y 16— m+ XY [0 — 6,
i=1 i=2

i=1

which makes the loss function smaller.
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Variation of fused lasso (cont'd)

Consider the Fused LASSO with a more general type:
2

N P P P
e
min 52 Yi—Bo— > xiBi | + M )18+ XD 18— Bl
’ i=1 j=1

j=1 Jj=2

We have 30 satisfies:

N p
S lyi—Bo=D xiBi| =0=fo= Z szljﬁjv

i=1 j=1 i=1 i=1 j=1

if xj; and y; are centered then
. P
bo=y-) %;jfj=0-0=0
j=1

we can actually omit g, independent with the choice of 3;,1 < i < p.
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Computational techniques for fused lasso

Lemmas for fused lasso
Q 0 (M1, \2) =Sy, (5,- (0, Ag)) for each i =1,...,N.

@ Suppose that for some value of A and some index i € {1,..., N — 1},
the optimal solution satisfies 6;(A) = 0;11(A). Then for all A" > X, we
also have 0; (\') = 041 (V).

v

Hence we can focus on the optimization problem:

N N

. 1 2

e {33007 3350}
i=1 i=2

@ reparametrize

@ start from A\ = 0 and increase A until all 8; are fused

@ use lagrangian duality to solve the problem
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Case study: total variation denoising

@ The idea here is that there exists a “true” image, but we only see a
noisy image, from which we would like to recover the true image.
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Trend Filtering

The fused LASSO is a special case of trend filtering, which fits piecewise

polynomials to data. The idea is to minimize a criterion of the form

B = arg mﬁin % En: (vi — 5i)2 +A HD(H_I)BHl

where D(k+1) is the (k + 1) th order difference operator.
Specifically, the second difference operator is given by

-1 2 -1 0 - 0
-1 2 -1 --- 0

p® —
0 o -~ -1 2 -1

And the loss function is

n

n—2
~ 1
B =arg min 5 E (i — B>+ X E |Bi — 2Bi+1 + Biso]
i-1

i=1
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Change Point Detection

The penalty is assumed that the observations occur at evenly spaced

points. For arbitrary input points x3 < x» < --- < Xx,, we can also use the
following penalty ! :

1 N n—2

2
5 (yi — 6;) +>\Zl

i=1

0i —0ir1  Oiy1 —biso

Xj — Xi+1 Xi+1 — Xi4-2

It encourages the slopes of the adjacent linear segments is the same,
leading to piecewise linear fits.

@ Here x; stands for the time stamp/input feature of observation y;.

!Tibshirani, R.J. (2014). Adaptive piecewise polynomial estimation via trend
filtering. Annals of Statistics, 42(1), 285-323.
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Isotonic regression

o Classical isotonic regression problem is to fit a nondecreasing
sequence to a given sequence of observations (y1,...,yn) by solving
the optimization problem

N
. 2 .
minimize E i —0; subjectto 01 <60, < ... <6
OCRN {i_l (}// I) } ) 1>02 > >~ UN

@ Nearly isotonic regression is a natural relaxation, in which we
introduce a regularization parameter A > 0, and instead solve the
penalized problem

N N-1
o 2
mlanel]gg\,ze{2 g (yi—0))"+ A E (Hi—9i+1)+}

i=1 i=1

[y
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Case study: global warming
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|
SCAD

@ A variety of nonconvex penalties have been proposed: one of the
earliest and most influential was the smoothly clipped absolute
deviations (SCAD) penalty:

9] if 0] < A
Pra(0) = § 20 A < (0] < A
X if 0] > A

for v > 2

@ Note that SCAD coincides with the lasso until |#] = A, then smoothly
transitions to a quadratic function until |#] = A, after which it
remains constant for all || > v\
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MCP

@ The MC+ penalty on each coordinate is defined by
6] gl — 102 191 <
@ For squared-error loss we pose the (nonconvex) optimization problem
1 ,
minimize §Hy—XﬁH2+z:P>\77 Bj) ¢ »

€RP
5 =
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]
SCAD, MCP and lasso in 1 dimension

B}
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Questions or comments?
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