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Lasso: recap

Least Absolute Shrinkage and Selection Operator (lasso)

Recall that the lasso estimate is defined by

β̂lasso(λ) = argmin
β∈Rp

{
1

2N
∥y − Xβ∥22 + λ∥β∥1

}
,

where λ ≥ 0 is a tuning parameter that controls the amount of shrinkage.

For the red part of the objective
function, we can generalize the
square loss to other loss functions:

Negative log-likelihood for GLMs

Negative log-partial-likelihood
for Cox models

Hinge loss for SVM

For the blue part of the objective
function, we can generalize the lasso
penalty to other penalties:

Elastic net

Group lasso

Fused lasso
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Part I

Negative log-likelihood for GLMs

Negative log-partial-likelihood for Cox models

Hinge loss for SVM
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Binary response variable

For simplicity, we can still use the linear model for a binary outcome

Linear probability model yi = x⊤i β + εi , E (εi | xi ) = 0

P (yi = 1 | xi ) = E (yi | xi ) = x⊤i β.

Easy interpretation
∂P (yi = 1 | xi )

∂xij
= βj

However, there are two defects:

Heteroskedasticity Var (yi | xi ) = x⊤i β
(
1− x⊤i β

)
.

Not natural for binary outcome because probability is bounded
between zero and one.

4 / 126



GLMs

A generalized linear model is made up of a linear predictor

ηi = β0 + β1x1i + . . .+ βpxpi

and two functions:

link function that describes how the mean, E (Yi ) = µi , depends on
the linear predictor

g (µi ) = ηi

variance function that describes how the variance, Var (Yi ), depends
on the mean

Var (Yi ) = ϕV (µ)

where the dispersion parameter ϕ is a constant
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Link functions

We can use a monotone transformation to force the linear predictor to lie
within the interval [0, 1]:

P(yi = 1|xi ) = g(x⊤i β).

Here, the inverse of g is called the link function.
There are some canonical choices of g :

Logit link: g(t) = et

1+et =
1

1+e−t , c.f. standard logistic distribution

Probit link: g(t) = Φ(t), c.f. standard normal distribution

Complementary log-log link: g(t) = 1− e−et , c.f. standard
log-Weibull distribution

Cauchit link: g(t) = 1
π arctan(t) + 1

2 , c.f. standard Cauchy
distribution
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Modelling Binomial Data

Suppose
Yi ∼ Binomial (ni , pi )

and we wish to model the proportions Yi/ni . Then

E (Yi/ni ) = pi Var (Yi/ni ) =
1

ni
pi (1− pi )

So our variance function is

V (µi ) = µi (1− µi )

Our link function must map from (0, 1) → (−∞,∞). A common choice is

g (µi ) = logit (µi ) = log

(
µi

1− µi

)
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Modelling Poisson Data

Suppose
Yi ∼ Poisson (λi )

Then
E (Yi ) = λi Var (Yi ) = λi

So our variance function is
V (µi ) = µi

Our link function must map from (0,∞) → (−∞,∞). A natural choice is

g (µi ) = log (µi )
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One-parameter Canonical Exponential Family

Canonical exponential family for k = 1, y ∈ R

fθ(y) = exp

(
yθ − b(θ)

ϕ
+ c(y , ϕ)

)
for some known functions b(·) and c(·, ·).
If ϕ is known, this is a one-parameter exponential family with θ being
the canonical parameter.

If ϕ is unknown, this may/may not be a two-parameter exponential
family. ϕ is called dispersion parameter.

We assume that ϕ is known.

The function g that links the mean µ to the canonical parameter θ is
called Canonical Link:

g(µ) = θ
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Expectation

Note that

ℓ(θ) =
Y θ − b(θ)

ϕ
+ c(Y ;ϕ),

Therefore

∂ℓ

∂θ
=

Y − b′(θ)

ϕ

It yields

0 = E
(
∂ℓ

∂θ

)
=

E(Y )− b′(θ)

ϕ

which leads to

E(Y ) = µ = b′(θ)
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Variance

On the other hand we have

∂2ℓ

∂θ2
+

(
∂ℓ

∂θ

)2

= −b′′(θ)

ϕ
+

(
Y − b′(θ)

ϕ

)2

and from the previous result,

Y − b′(θ)

ϕ
=

Y − E(Y )

ϕ

Together, with the second identity, this yields

0 = −b′′(θ)

ϕ
+

var(Y )

ϕ2

which leads to

var(Y ) = V (Y ) = b′′(θ)ϕ
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Negative log-likelihood

Now we consider minimize negative log-likelihood with a penalty:

minimize
β0,β

{
− 1

N
L (β0, β; y ,X ) + λ∥β∥

}
where the type of norm is specified in the problem. We consider the linear
model as an example of GLM. Assuming Y |X = x ∼ N (µ(x), σ2). Then:

L (β0, β; y ,X ) = −
N∑
i=1

(yi − β0 − βxi )
2

2σ2
+ c = −

∥y − β0 − βX∥22
2σ2N

+ c

where c is a constant that does not depend on β0 and β.
Hence, negative log-likelihood is equivalent to the square error loss in this
case.

Remarks on negative log-likelihood

Why? Under regular conditions, the Fisher information matrix is positive
definite, so the negative log-likelihood is a convex function of the
parameter.
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An example for classification

Suppose we take Yi ∈ {+1,−1}, namely,
P(Yi = 1) = πi ,P(Yi = −1) = 1− πi , and

logit(πi ) = β0 + βT
1 xi , i = 1, ..., n.

Then the likelihood function is

L(π|y1, ..., yn) =
n∏

i=1

1

1 +
(
1−πi
πi

)yi .
After some trivial algebras, we can get the following negative log-likelihood
function with a penalty:

1

N

N∑
i=1

log
(
1 + e−yi(β0+β⊤xi)

)
+ λ∥β∥1.

Here, yi
(
β0 + β⊤xi

)
can be interpreted as the margin of the i-th

observation, for which positive values indicate correct classification and
negative values indicate incorrect classification.
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Case study: document classification

The 20 Newsgroups data set is a collection of approximately 20,000
newsgroup documents, partitioned (nearly) evenly across 20 different
newsgroups. It was originally collected by Ken Lang, for his
Newsweeder: Learning to filter netnews paper, though he does
not explicitly mention this collection. The 20 newsgroups collection
has become a popular data set for experiments in text applications of
machine learning techniques, such as text classification and text
clustering.

Koh, Kim, Boyd (2007) analysis the data set by logistic regression
interior point method.

Freidman, Hastie, Tibshirani (2010) use this data to illustrate their
glmnet via coordinate descent.

A team at Renmin U and Tsinghua U (2022) developed a Bayesian
method for classification and summerization, their work published on
Journal of Machine Learning Research.
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Case study: document classification
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Case study: document classification

We have N = 11314 documents that we want to classify into two
different groups (Y ∈ {−1,+1}).
The features are defined as the set of trigrams (with some
restrictions). In NLP, trigrams mean a sequence of three adjacent
elements from a string of tokens. We have p = 777811 features in
total.

Each document contains an average of 425 nonzero features. So this
is a sparse problem.

We want to perform ℓ1 regularized logistic regression.
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Case study: document classification

You can see that overfitting occurs when λ is too small, or equivalently,
fraction deviance explained is too large, namely, the model is too
“saturated”.
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Case study: document classification

The fraction deviance explained
(
D2
λ

)
is then defined by:

D2
λ =

Devnull − Devλ
Devnull

R2 =
SStot − SSres

SStot
Deviance: (Devλ) is defined as minus twice the difference in the
log-likelihood for a model fit with parameter λ and the “saturated
model”(having ŷ = yi ).

Remarks on GOF statistics

It also reminds me conditional MSE in Guorong Dai’s setup:

E{(Y − g(U))2|S = s}
E{(Y − d(X ))2|S = s}

.

So when we comparing two models, a natural choice is to find a proper
ratio of the “errors” of two models. 18 / 126



Computational techniques

With current estimate
(
β̃0, β̃

)
, we form the quadratic function:

Q (β0, β) =
1

2N

N∑
i=1

wi

(
zi − β0 − βT xi

)2
+ C

(
β̃0, β̃

)
,

C denotes a constant independent of (β0, β) , zi and wi are defined as:

zi = β̃0 + β̃T xi +
yi − p̃ (xi )

p̃ (xi ) (1− p̃ (xi ))
, and wi = p̃ (xi ) (1− p̃ (xi ))

where p̃ (xi ) is the current estimate for Pr (Y = 1 | X = xi )

Each outer loop then amounts to a weighted lasso regression
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Multiple outcomes

Setting

Y ∈ {1, ...,K} for K > 2 classes. There are two natural ways for reduction
to binary classification in general:

OvO (One versus One): all
(K
2

)
pairs of classes samples are used to

fit
(K
2

)
binary classifiers, then the predicted class is the one which is

predicted the most.

OvA (One versus All): treat all other classes as a single negative
class.

Drawbacks

OvO: computationally exhaustive and cases where same amount of
votes for more classes.

OvA: imbalance amounts positive and negative observations.
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Multinomial distribution

Suppose we have nomial variable: a categorical variable that does not
have intrinsic ordering or ranking, e.g., gender, colors, marital status,
race, blood types
Multinomial distribution

y ∼ Multinomial (π1, . . . , πK ) ,
K∑

k=1

πk = 1

y takes values in {1, ...,K} with probability P(y = k) = πk .
We want to model yi based on covariates xi .

yi | xi ∼ Multinomial [1; {π1 (xi ) , . . . , πK (xi )}] ,
K∑

k=1

πk (xi ) = 1 for all xi .

πyi (xi ) =
K∏

k=1

{πk (xi ) if yi = k} =
K∏

k=1

{πk (xi )}I(yi=k) .
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Multinomial logistic/softmax regression

View the category K as the reference level, we model the ratios of the
probabilities of category k and K

log
πk (xi )

πK (xi )
= β0k + x⊤i βk (k = 1, . . . ,K − 1)

πk (xi ) = πK (xi ) e
β0k+x⊤i βk

Denote βK = 0⇝ reference level

K∑
k=1

πk (xi ) = 1 =⇒ πK (xi )
K∑

k=1

eβ0k+x⊤i βk = 1

=⇒ πK (xi ) = 1/
K∑

k=1

eβ0k+x⊤i βk

=⇒ πk (xi ) =
eβ0k+x⊤i βk∑K
l=1 e

β0l+x⊤i βl
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Multinomial logistic with penalty

In traditional multinomial regression, one category must be chosen as
a reference group (i.e., have βk set to 0 ) or else the problem is not
identifiable ⇝ {βkj + cj}Kk=1 and {βkj}Kk=1 produce the same
likelihood

Instead of traditional multinomial logistic regression, we can consider the
following over specified version:

P(Y = k | X = x) =
eβ0k+βT

k x∑K
ℓ=1 e

β0ℓ+βT
ℓ x

.

we regularize the coefficients, and the regularized solutions are not
equivariant under base/reference changes,

the regularization automatically eliminates the redundancy

The penalty term is λ
∑K

k=1 ∥βk∥1
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Multinomial logistic with vectorization

Log-likelihood form is

logP (Y = yi | xi ) = β0,yi + β⊤
yi
xi − log

(
K∑

k=1

eβ0k+β⊤
k xi

)
.

Let rik := I (yi = k) ,RN×K := (rij)

Such vectors and matrices can be stored efficiently by only storing the
nonzero values, and then row and column indices of where they occur
⇝ Compressed Column Storage (CCS), ...

We have β0,yi + β⊤
yi
xi =

∑K
k=1 rik

(
β0k + β⊤

k xi
)

Hence

logP (Y = yi | xi ) =
K∑

k=1

rik

(
β0k + β⊤

k xi

)
− log

(
K∑

k=1

eβ0k+β⊤
k xi

)
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Multinomial logistic with penalty

Then we can write the log-likelihood in the more explicit form

1

N

N∑
i=1

wi

[
K∑

k=1

rik

(
β0k + βT

k xi

)
− log

{
K∑

k=1

eβ0k+βT
k xi

}]

The weights wi are used to adjust the contribution of each
observation to the likelihood, wi = 1 by default.

Then for any candidate solution {β̃kj}Kk=1, the criterion to resolve the
choice of cj is the penalty term.

cj = argmin
c∈R

{
K∑

k=1

∣∣∣β̃kj − c
∣∣∣} = median

{
β̃1j , . . . , β̃Kj

}
,

for j = 1, . . . , p.
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Case study: Handwritten digits

Figure: Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright.
Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015,
page 38.

Handwritten Digit Recognition with a Back-Propagation Network is
published in 1989.

LeNet-5: The first part includes two convolutional layers and two
pooling layers which are placed alternatively. The second part consists
of three fully connected layers.
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Case study: Handwritten digits

We have N = 7921 gray-scale images of p = 256 pixels representing
handwritten digits from 0 yo 9, namely, Y ∈ {0, ..., 9}.
Each one of the p features represents the intensity in a [0, 1]-scale of
the corresponding pixel (0 black, 1 white).

We can fit a 10-classes lasso multinomial model.

Deep networks indeed have better performance.
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Computational techniques

Linear predictor:

Zik = β0k + β⊤
k xi , pik = Pr (Y = k | xi ) =

eZik∑K
m=1 e

Zim

.

Log-likelihood (without penalty):

L(β) =
N∑
i=1

K∑
k=1

rikZik −
N∑
i=1

log

(
K∑

m=1

eZim

)
.

Lasso problem:

min
β

− 1

N
L(β) + λ

K∑
k=1

∥βk∥1 .

We use coordinate descent (BCD) algorithm to solve it (profiling)
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Computational techniques

Fix other parameters
{
β̃0k ′ , β̃k ′

}
k ′ ̸=k

, update (β0k , βk)

Let ℓik = yikZik − log
(∑K

j=1 e
Zij

)
and pk (xi ) =

eZik∑K
j=1 e

Zij

∂ℓik
∂Zik

= yik − pk (xi )
∂2ℓik
∂Z 2

ik
= −pk (xi ) (1− pk (xi )) =: −wik

Heuristically, by Taylor expansion, we can derive a quadratic objective
function as

Qk (β0k , βk) = − 1

2N

N∑
i=1

wik

(
hik − β0k − βT

k xi

)2
+C

({
β̃0k , β̃k

}K

k=1

)
,

where C denotes a constant independent of (β0k , βk), and

hik = β̃0k+ β̃T
k xi +

yik − p̃k (xi )

p̃k (xi ) (1− p̃k (xi ))
and wik = p̃k (xi ) (1− p̃k (xi ))
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Count outcomes

A random variable Y is Poisson(λ) if its probability mass function is

P(Y = k) = e−λλ
k

k!
, (k = 0, 1, 2, . . .)

If Y ∼ Poisson(λ), then E(Y ) = Var(Y ) = λ.

If Y1, . . . ,YK are mutually independent with Yk ∼ Poisson (λk)

Y1 + · · ·+ YK ∼ Poisson(λ),

(Y1, . . . ,YK ) | Y1 + · · ·+ YK = n ∼ Multinomial

(
n,

(
λ1

λ
, . . . ,

λK

λ

))
,

where λ = λ1 + · · ·+ λK .
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Some extensions of Poisson distribution

The Poisson distribution restricts that the mean must be the same as
the variance. It cannot capture the feature of over-dispersed data
with variance larger than the mean.

Negative binomial distribution: a scale-mixture of Poisson.

P(Y = k) =
Γ(k + θ)

Γ(k + 1)Γ(θ)

(
θ

µ+ θ

)θ ( µ

µ+ θ

)k

, (k = 0, 1, 2, . . .)

with E(Y ) = µ and Var(Y ) = µ+ µ2/θ.

Zero-inflated Poisson: a mixture of Poisson and point mass at zero.

P(Y = k) =

{
p + (1− p)e−λ, if k = 0

(1− p)e−λ λk

k! , if k = 1, 2, . . .

E(Y ) = (1− p)λ and Var(Y ) = (1− p)λ(1 + pλ)
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Poisson regression model / log-linear model

{
Yi | Xi ∼ Poisson (λi ) ,

λi = λ (Xi , β) = eβ0+X⊤
i β.

E (Yi | Xi ) = var (Yi | Xi ) = eβ0+X⊤
i β.

This model is also called log-linear model

logE (Yi | Xi ) = β0 + X⊤
i β

Interpretation: conditional log mean ratio

log
E (Yi | . . . ,Xij + 1, . . .)

E (Yi | . . . ,Xij , . . .)
= βj
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Poisson regression with penalty

Likelihood:

L(β) =
n∏

i=1

e−λi
λyi
i

yi !
∝

n∏
i=1

e−λiλyi
i

log L(β) =
n∑

i=1

(−λi + yi log λi ) =
n∑

i=1

(
−eβ0+x⊤i β + yi (β0 + x⊤i β)

)
.

The penalty term is λ∥β∥1.

− 1

N

N∑
i=1

{
yi

(
β0 + β⊤xi

)
− eβ0+β⊤xi

}
+ λ∥β∥1

Take derivatives on β0 and set it to zero ⇝ 1
N

∑N
i=1 e

β̂0+β̂⊤xi = ȳ
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Poisson regression for rates modeling

If observation windows have different lengths Ti , then

E [yi | Xi = xi ] = Tiµ (xi )

where µ (xi ) rate per unit time interval.

6 months ∼ yearly visit to doctor has T = 6.

logE[Y | X = x ,T ] = logT︸ ︷︷ ︸
“offset”

+β0 + β⊤x

The terms logTi for each observation require no fitting, and are
called an offset.
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Case study: distribution smoothing

N count variables {yk}Nk=1 coming from a N-cell multinomial
distribution.

r = {rk}Nk=1 =
{
yk/

∑N
k=1 yk

}N

k=1
vector of proportions.

Issue: r could be sparse. Want to regularize it toward a more stable
distribution u = {uk}Nk=1.

minimize
q∈RN ,qk≥0

N∑
k=1

qk log

(
qk
uk

)
︸ ︷︷ ︸

Kullback-Leibler divergence

such that ∥q − r∥∞ ≤ δ,

N∑
k=1

qk = 1

We want a distribution q which is approximately equal to our
observed proportions but at the same time as close as possible to a
nominal distribution u.
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Case study: distribution smoothing

Why this problems falls in Poisson model framework?

The previous minimization problem minimize
q∈RN ,qk≥0

∑N
k=1 qk log

(
qk
uk

)
such

that ∥q − r∥∞ ≤ δ,
∑N

k=1 qk = 1 has Lagrange dual

maximize
β0,α

{
N∑

k=1

rk

[
log uk + β0 + αk − uke

β0+αk

]
− δ∥α∥1

}

This is equivalent to fitting a Poisson model with offset log uk ,
individual parameter αk and design matrix X = IN×N .
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Case study: distribution smoothing

Figure: Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright.
Statistical learning with sparsity
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Time-to-event data

Survival analysis in biostatistics

Outcome denotes the Survival time or the time to the recurrent of the
disease

Duration analysis in econometrics

Outcome denotes the weeks unemployed or days until the next arrest
after being released from incarceration

Time-to-event-data

Non-negative
May be censored, resulting in inadequate tail information
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Survival function

Medical studies interested in time to death T of sick patients, usually
characterized by the survival function S(t) := P(T > t), the
probability of surviving beyond a certain time t.

Some patients drop out the study or die because of unrelated causes:
we call this situation a censoring time C .

Y := min(C ,T ) is the observed outcome variable, together with an
indicator δ := I{Y = T} of whether the patient died correctly
(because of the studied illness).
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Hazard function and Cox model

Hazard function: Instantaneous probability of death at time t, given
survival up till t.

h(t) = lim
δ→0

P(Y ∈ {t, t + δ} | Y ≥ t)

δ
=

f (t)

S(t)

where f (t) density of T .

Cox’s model treats special cases of hazard functions:

h(t|x) = h0(t)e
β⊤x

where x represents e.g. gene expressions and h0(t) is baseline
hazard: hazard for one individual with x = 0 ⇝ semiparametric

The coefficient β represents the multiplicative effect of the covariates
on the hazard

h(t| · · · , xj + 1, · · · )
h(t| · · · , xj , · · · )

= eβj ⇝ hazard ratio (HR)
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The hazard of hazard ratio (Hernán, 2010)

Treatment Zi and time-to-event outcome Yi .

Hazard: the event rate at time t conditional on survival until time t
or later

lim
∆t→0

P(t ≤ Y < t +∆t|Y ≥ t)

∆t
.

Survival analysis assumes models for hazard, e.g., Cox models,
additive hazard models, etc.

Hazard ratio between the treatment and control compares

lim∆t→0
P(t≤Y (1)<t+∆t|Y (1)≥t)

∆t , lim∆t→0
P(t≤Y (0)<t+∆t|Y (0)≥t)

∆t

which compares the populations {i : Yi (1) ≥ t} and {i : Yi (0) ≥ t}.
Hazard ratio has a built-in selection bias.

41 / 126



Risk sets and partial likelihood

Go back to the Cox model.

h(t|x) = h0(t)e
β⊤x

Denote by Ri := {j | yj ≥ yi} the risk set of subject i (individuals
which are still in the study when subject i dies).

Cox (1972; 1975) proposed the partial likelihood. He argued that only
a part of the likelihood is useful when we are interested in the
parameter β only

The partial likelihood of subject i is given by

h (yi |xi )∑
j∈Ri

h (yj |xj)
=

eβ
⊤xi∑

j∈Ri
eβ

⊤xj

Note that baseline hazard h0 has no effect here, does not depend on
actual death times
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Interpretation of Partial Likelihood

Let the “event” = “die” for convenience

The probability that a subject with covariate value X(j) dies at time
tj , given that one and only one subject in the risk set Rj dies at time
tj , is

P(subject with X(j) dies at time tj |dies in Rj but don’t know who)

=
P(subject with X(j) dies at time tj | survives to time tj)

P(dies at time tj and know in the risk set Rj | in the set Rj survive to time tj)

=
h(tj |X(j))∑
i∈Rj

h(tj |Xi )

=
eβ

⊤X(j)∑
i∈Rj

eβ⊤Xi
.

We sequentially consider in time order t1, t2, ..., tk and then we obtain
the likelihood Lp(β)
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Cox model with penalty

The log-partial-Likelihood is

ℓp(β; x , δ) =
∑
δi=1︸︷︷︸

died ”correctly”

log

[
eβ

⊤xi∑
j∈Ri

eβ
⊤xj

]

with corresponding ℓ1-penalized CPH problem:

minimize
β

−
∑
δi=1

log

[
eβ

⊤xi∑
j∈Ri

eβ
⊤xj

]
+ λ∥β∥1


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Case study: lymphoma data

We want to estimate the hazard function S for N = 240 Lymphoma
patients with p = 7399 variables measuring gene expressions. 102 of
these samples are right censored, i.e.

Y = min(T ,C ) = C

They use the ℓ1-penalized CPH problem to find β̂(λmin).
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Case study: lymphoma data

Simon, Friedman, Hastie and Tibshirani (2011) give details for an
algorithm based on coordinate-descent

Implemented in the R package glmnet
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Kaplan-Meier estimator

We use the Kaplan-Meier estimator of survivor function S(t) : let
η̂(x) := β̂ (λmin )

⊤ x , then

Ŝ(t) =
∏
i :yi≤t

1− e η̂(xi )∑
j∈Ri

e η̂(xj)


is an estimate of S(t). We use these in the following plot.

In computing the score η̂ (xi )
(k) for the observations in fold k, we use the

coefficient vector β̂(−k) computed with those observations omitted. Doing
this for all K folds, we obtain the ”pre-validated” dataset{(

η̂ (xi )
(k) , yi , δi

)}N

i=1
.
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Pre-validation

The Cox model is a semi-parametric model, and the proportional
hazard assumption is crucial.

The proportional hazard assumption is not always satisfied, and the
Cox model may not be the best choice.

Pre-validation is a method to check the proportional hazard
assumption.

The idea is to split the data into two parts,

one part ⇝ xi
the other part ⇝ β̂(k)

repeat for k = 1, ...,K folds
obtain the pre-validated dataset {(η̂(xi )(ki ), yi , δi )}Ni=1

If the proportional hazard assumption holds, the estimated
coefficients should be similar.
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Case study: lymphoma data

Log-rank test is used to formally test whether the survival curves are
statistically different
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Support vector machine
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SVM: A toy model

Suppose we have a classification rule : {x : f (x) = β0 + xTβ}, here
x = (x1, x2)

T ∈ R2.
Consider the following lines:

l1 : β0 + β1x1 + β2x2 = 1,

l−1 : β0 + β1x1 + β2x2 = −1

l0 : β0 + β1x1 + β2x2 = 0.

Then, by geometry,

d(l0, l1) = d(l0, l−1) =
1√

β2
1 + β2

2

=
1

∥β∥2
.

So if the dataset is linear separable, by setting the closest point xi to
the classification boundary l0 as f (xi ) = 0, we have ∃β0, β such that

f (xi ) =

{
> 0, if yi = +1,

< 0, if yi = −1.
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SVM geometric interpretation

Consider the Boundary B = {x ∈ Rp | f (x) = 0}, where

f (x) = β0 + β⊤x

Then the distance between the boundary and the point x0 is

dist (x0,B) = inf
z∈B

∥z − x0∥2 =
|f (x0)|
∥β∥2

So we find that the optimal separating plane f ∗(x) = 0 has margin

M∗
2 = max

β0,β

{
min

i∈{1,...,n}

yi f (xi , β0, β)

∥β∥2

}

52 / 126



SVM with slack variable ξi

We allow some points to be misclassified, and introduce a slack
variable ξ = (ξ1, ..., ξn), ξi ≥ 0 for each observation.

yi (β0 + xTi β) represents the “distance” of xi to the classification
boundary ⇝ a linear classifier is scale invariant, the solution
coefficients can be rescaled, WLOG, we can set ∥β∥2 = 1

Foundamentally, we want yi (β0 + xTi β) ≥ M,

But we allow some points to be misclassified, so we relax the
constraint to yi (β0 + xTi β) ≥ M(1− ξi ).∑N

i=1 ξi ≤ C will introduce a bias-variance trade-off:

C = 0: hard margin SVM, no misclassification allowed,
C large: wide margin, introduce large bias and low variance in
classification,
C small: narrow margin, introduce small bias and high variance in
classification.
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Optimization problem of SVM

Denote M as half width of the yellow part in the illustrator as the
margin of the classifier.

Objective:
max

β0,β,{ξi}Ni=1

M

Constraints: yi

(
β0 + β⊤xi

)
︸ ︷︷ ︸

f (xi ,β0,β)

≥ M (1− ξi ) ,∀i , where

ξi ≥ 0,∀i ,
∑N

i=1 ξi ≤ C , ∥β∥2 = 1

Note that by the constraints, we have

ξi ≥ 1− yi f (xi , β0, β) , ξi ≥ 0.

so
∑N

i=1 ξi ≥
∑N

i=1[1− yi (β0 + βT xi )]+.
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Optimization problem of SVM

By writing the Lagrangian equivalent of the original minimization
problem (SVM), we get:

minimize
β0,β

{
1

N

N∑
i=1

[1− yi f (x ;β0, β)]+ + λ∥β∥22

}
Decreasing λ corresponds to decreasing C and
f (xi ;β0, β) = β0 + βT xi .

Hinge loss [1− yi f (x ;β0, β)]+ is zero when if xi lies on the correct
side of the margin. For data on the wrong side of the margin, the
function’s value is proportional to the distance from the margin.

ℓ1 penalized version:

minimize
β0,β

{
1

N

N∑
i=1

[1− yi f (xi ;β0, β)]+ + λ∥β∥1

}
.
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RKHS and kernel trick

Kernel

Let X be a non-empty set. A function k : X × X → R is called a kernel if
there exists an R-Hilbert space and a map ϕ : X → H such that
∀x , x ′ ∈ X ,

k
(
x , x ′

)
:= ⟨ϕ(x), ϕ

(
x ′
)
⟩H.

RKHS

Let H be a Hilbert space of R-valued functions defined on a non-empty
set X . A function k : X ×X → R is called a reproducing kernel of H, and
H is a reproducing kernel Hilbert space, if k satisfies

∀x ∈ X , k(·, x) ∈ H,

∀x ∈ X ,∀f ∈ H, ⟨f , k(·, x)⟩H = f (x) (the reproducing property).
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Examples of kernels

If K (x , y) = (⟨x , y⟩+ c)2 = (x1y1 + x2y2 + c)2 = ⟨Φ(x),Φ(y)⟩, then
Φ(x) = (x1, x2,

√
2cx1,

√
2cx2, c)

T .

There are many other kernels,

Polynomial kernel: K (x , y) = (⟨x , y⟩+ c)d ,
Gaussian kernel: K (x , y) = exp(−∥x − y∥2/2σ2),
Laplacian kernel: K (x , y) = exp(−∥x − y∥/σ),
Sigmoid kernel: K (x , y) = tanh(κ⟨x , y⟩+ θ).

The linear SVM can be generalized using a kernel to create nonlinear
boundaries.

∥β∥2 ⇝ ∥β∥HK

We’ll revisit this variation in Group Lasso
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SVM vs logistic regression

Penalized logistic:

minimize
β0,β


1

N

N∑
i=1

log
(
1 + e−yi f (xi ,β0,β)

)
︸ ︷︷ ︸

logistic loss

+λ∥β∥


Penalized svm:

minimize
β0,β

 1

N

N∑
i=1

[1− yi f (x ;β0, β)]+︸ ︷︷ ︸
hinge loss

+λ∥β∥


Data is separable: there exists a hyperplane that separates the two
cases. In this cases logistic regression has a problem:

P(Y = 1 | X = x) =
eβ0+β⊤x

1 + eβ0+β⊤x
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Problem of logistic regression

Problem: When p ≫ N, the points are almost always separable.
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Relationship between SVM and logistic regression

Consider the problem

minimize
β0,β

{
1

N

N∑
i=1

log
(
1 + e−yi f (xi ,β0,β)

)
+ λ∥β∥22

}

Let
(
β̃0(λ), β̃(λ)

)
be the solution, then Rosset et al. (2004) showed that

M∗
2 = lim

λ→0

 min
i∈{1,...,N}

yi f
(
xi , β̃0(λ), β̃(λ)

)
∥β̃(λ)∥2


So for λ → 0 we have that the ℓ2-regularized logistic regression
corresponds to the SVM solution.
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Relationship between SVM and logistic regression

In particular, if
(
β̆0, β̆

)
solve the SVM problem for C = 0, then we have

that:

lim
λ→0

β̃(λ)

∥β̃(λ)∥2
= β̆

Note that the division by the ℓ2 norm of β̃(λ) makes sure that the solution
on the SVM problem does not blow up.

As λ → 0, logistic regression and SVM solutions coincide

SVM leads to a more stable numerical method for computing the
solution in the solution is most dense

Logistic regression is more useful in the sparser part of the solution
path
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Part II

Elastic net

Group lasso/overlap group lasso

Fused lasso
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Case study: comparison of lasso and elastic net on highly
correlated variables

In microarray studies, groups of genes in the same biological pathway
tend to be expressed (or not) together, and hence measures of their
expression tend to be strongly correlated.

Simulation setup

1 2 sets of 3 variables, pairwise correlations around 0.97 in each group

2 sample size: N = 100,

3 data are simulated as follows:

Z1,Z2 ∼ N(0, 1) independent

Y = 3Z1 − 1.5Z2 + 2ϵ, ϵ ∼ N(0, 1)

Xj(j = 1, 2, 3) = Z1 + ξ/5, ξj ∼ N(0, 1)

Xj(j = 4, 5, 6) = Z2 + ξ/5, ξj ∼ N(0, 1)
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Case study: comparison of lasso and elastic net on highly
correlated variables

Figure: The lasso estimates ( α = 1 ), as shown in the left panel, exhibit
somewhat erratic behavior as the regularization parameter λ is varied. In the right
panel, the elastic net with (α = 0.3) includes all the variables, and the correlated
groups are pulled together.
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Case study: comparison of lasso and elastic net on highly
correlated variables

lasso estimates exhibit erratic behavior as λ varies: one variable is
excluded and the correlations among variables are not clear
elastic net includes all variables and correlated groups are pulled
together, sharing values approximately equally.
the difference between my plot and the book’s plot is due to the
random seed. 65 / 126



Elastic net

Recap, the elastic net problem is defined as

minimize
(β0,β)∈R×Rp

{
1

2

N∑
i=1

(
yi − β0 − xTi β

)2
+ λ

[
1

2
(1− α)∥β∥22 + α∥β∥1

]}
Denote R as the objective function of elastic net, then for βj > 0,

∂R

∂βj
=

1

N

N∑
i=1

(
yi − β0 − x⊤

j β
)
(−xij) + λ [(1− α)βj + α sgn (βj)]

=
1

N

N∑
i=1

(yi − β0 −
∑
k ̸=j

xikβk︸ ︷︷ ︸
=rij

−xijβj
) (−xij) + ...

= − 1

N

N∑
i=1

rijxij +
1

N

N∑
i=1

x2ijβj + λ [(1− α)βj + α sgn (βj)] .
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Elastic net

Setting the derivatives to zero yields[
1

N

N∑
i=1

x2ij + λ(1− α)

]
βj + αλ sgn(β) =

1

N

N∑
i=1

rijxij

As we did in lasso case, here coordinate descent have a close form
update for each βj .

β̂j =
Sλα

(∑N
i=1 rijxij

)
∑N

i=1 x
2
ij + λ(1− α)

,

where rij = yi − β̃0 −
∑

k ̸=j xik β̂k and Sµ(z) := sign(z)(z − µ)+.

In practice, group structure may not be as evident as the previous
‘ideal’ model, this example does capture the main idea of elastic net.

By adding ridge penalty to lasso penalty, elastic net automatically
controls for strong within-group correlations.
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Elastic net
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Why does elastic net promote grouping?

Grouping effect (Zou and Hastie, 2005)

Given data (y ,X ) and penalty parameters (λ1, λ2), the response y is
centered and the predictor X are standardized. Let β̂(λ1, λ2) be the naive
elastic net estimate. Suppose that β̂i (λ1, λ2)β̂j(λ1, λ2) > 0. Then

Dλ1,λ2(i , j) =
1

∥y∥2

∣∣∣β̂i (λ1, λ2)− β̂j (λ1, λ2)
∣∣∣ ≤ 1

λ2

√
2(1− ρ)

where ρ = xT
i xj , the sample correlation.

The unitless quantity Dλ1,λ2(i , j) describes the difference between the
coefficient paths of predictors i and j . If xi and xj are highly correlated,
i.e. ρ ≈ 1 (if ρ ≈ −1 then consider −xj ), grouping effect says that the
difference between the coefficient paths of predictor i and predictor j is
almost 0
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Grouping effect

Consider the overall minimization

min
β

∥y − Xβ∥2 + λ1∥β∥1 + λ2∥β∥2︸ ︷︷ ︸
L(β)

.

Then the optimality at βi and βj is{
∂L
∂βi

= −2xT
i (y − Xβ) + 2λ2βi + λ1 sgn (βi ) = 0

∂L
∂βj

= −2xT
j (y − Xβ) + 2λ2βj + λ1 sgn (βj) = 0

Substracting the two equations, we have

2
(
x j − x i

)⊤
(y − Xβ) + 2λ2 (βi − βj) + λ1

sgn (βi )− sgn (βj)︸ ︷︷ ︸
=0, by assumption

 = 0
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Grouping effect (cont’d)

By the previous equation, we have

(βi − βj) =
1

λ2

(
x i − x j

)⊤
(y − Xβ)

Then, we have

(βi − βj)
2 ≤ 1

λ2
2

∥xi − xj∥2∥y − Xβ∥2 (by Cauchy)

Then we can bound the inequality by parts. For ∥xi − xj∥2, by centered
dataset, we have ∥xi∥2 = 1, i = 1, ..., p and xT

i xj = ρ, so

∥xi − xj∥2 = ∥xi∥2 + ∥xj∥2 − 2xT
i xj = 2(1− ρ).
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Grouping effect (cont’d)

For ∥y − Xβ∥2, by optimization,

∥y − X β̂∥22 + λ1∥β̂∥1 + λ2∥β̂∥22 = L(β̂) ≤ L(0) = ∥y∥22.

then,
∥y − X β̂∥22 ≤ ∥y∥22 − λ1∥β̂∥1 − λ2∥β̂∥22 ≤ ∥y∥22.

Combining all the upper bounds, we have

|βi − βj | ⩽
1

λ2

√
2(1− p)∥y∥2,

which completes the proof.
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Quadratic Form

Assume the design matrix has two centered and standardized columns,
with inner products given by

x⊤1 x1 = x⊤2 x2 = 1, x⊤1 x2 = ρ, −1 ≤ ρ ≤ 1.

For the coefficient vector β = (β1, β2)
⊤, the squared error can be written

as a quadratic form

L(β) =
1

2
∥y − Xβ∥22 =

1

2

(
β − β̂OLS

)⊤
G
(
β − β̂OLS

)
+ const ,

where the Gram matrix is

G = X⊤X =

(
1 ρ
ρ 1

)
and the contours of the loss function, centered at β̂OLS, are given by the
equation (

β − β̂OLS

)⊤
G
(
β − β̂OLS

)
= const .
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Eigenvalues

Perform eigen-decomposition of G . Solve for eigenvalues µ:

det(G − µI ) = det

(
1− µ ρ
ρ 1− µ

)
= (1− µ)2 − ρ2 = 0.

The solutions are
µ1 = 1 + ρ, µ2 = 1− ρ.

The corresponding (unnormalized) eigenvectors can be chosen as

v (1) =

(
1

1

)
(in the direction y = x) , v (2) =

(
1

−1

)
(y = −x) .
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Ellipse

In the eigenvector basis, let u = Q⊤
(
β − β̂OLS

)
, where Q is composed of

the unit eigenvectors as columns. The quadratic form becomes

(β − β̂)⊤G (β − β̂) = µ1u
2
1 + µ2u

2
2 .

Fixing the level = c (i.e., the contour), we obtain the ellipse equation

u21
c/µ1

+
u22

c/µ2
= 1.

From this, the semi-axis length in the i-th eigenvector direction is
√
c/µi .

Thus, the smaller the eigenvalue, the longer the semi-axis in the
corresponding direction. Noting that µ2 = 1− ρ ≈ 0, the semi-axis in the
y = −x direction is very long, and the loss function changes slowly in this
direction. In other words, if the two variables are highly correlated, their
coefficients can vary over a wide range with almost no change in the loss
function value.
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Grouping effect: an illustration
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Grouping effect: an illustration
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Group lasso

An example for group lasso

Genes and proteins often lie in known pathways, an investigator may be
more interested in which pathway are related to an outcome than whether
particular individual genes are.

Groups of covariates should be selected into or out of a model
together
Desirable to have all coefficients within a group become nonzero (or
zero) simultaneously

We use group lasso penalty (Yuan and Lin, 2006) for such situations.
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Group lasso

Consider linear regression model involving J groups of covariates,
where j = 1, ..., J

Vector Zj = (Xj1, ...,Xjpj )
T ∈ Rpj represents the covariates in group j

pj does not need to be the identical for all j

Goal: predict real-valued response Y ∈ R based on collection of
covariates (Z1, ...,ZJ)

Linear model E(Y |Z ) takes the form θ0+
∑J

j=1 ZT
j θj , where θj ∈ Rpj .
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Group lasso

Given a collection of N samples {(yi , zi1, zi2, . . . , ziJ)}Ni=1 the group lasso
solves the convex problem:

minimize
θ0∈R,θj∈Rpj

1

2

N∑
i=1

yi − θ0 −
J∑

j=1

zTij θj

2

+ λ

J∑
j=1

∥θj∥2


Where ∥θj∥2 is the Euclidean norm.
This is group generalization of the lasso with properties:

Depending on λ ≥ 0 either the entire vector θ̂j will be zero, or all its
elements will be nonzero.

When pj = 1, j = 1, ..., J, then we have ∥θj∥2 = |θj |, so reduces to
the ordinary lasso.
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Lasso vs group lasso

If β is individually sparse, then very likely all ∥θj∥2 will have value. But if
β is group sparse, then only a few groups ∥θj∥2 is activated.

Lasso penalty:

|β|1 =
∑p

j=1 |βj |,

β̂ is sparse.

Group lasso penalty:

β = (θ1, ...,θJ)

By notation abuse, denote
∥β∥2,1 =

∑p
j=1 ∥θ∥2, denote

θ = (∥θ1∥1, ..., ∥θJ∥2).
θ̂ is sparse.
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An unit ball example for group lasso penalty

Left unit ball can be characterized as
√
β2
1 + β2

2 + |β3| ≤ 1

Middle unit ball can be characterized as |β1|+ |β2|+ |β3| ≤ 1

Right unit ball can be characterized as
√
β2
1 + β2

2 + β2
3 ≤ 1

82 / 126



Multilevel factors in regression

A predictor can be a categorical factor with multiple levels.

Example: one continuous predictor X and a 3-level factor
G ∈ {g1, g2, g3}.
Model for the mean:

E(Y | X ,G ) = Xβ +
3∑

k=1

θkIk [G ]

Interpretation: regression in X with different intercepts depending on
G .
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Dummy variable representation

Introduce dummy vector Z = (Z1,Z2,Z3), where Zk = Ik [G ].

Model becomes:

E(Y | X ,Z ) = Xβ + ZT θ, θ = (θ1, θ2, θ3).

If G has no predictive power ⇒ θ = 0.

Otherwise, coefficients in θ are typically nonzero.
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General form with multiple factors

With multiple group variables G1, . . . ,GJ :

E(Y | X ,G1, . . . ,GJ) = β0 + XTβ +
J∑

j=1

ZT
j θj

Variable selection often done at group level, not individual
coefficients.

Group Lasso is designed for this purpose.
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Aliasing and coding issues

In unpenalized regression, dummy variables in a set sum to one

E(Y | X ,G1, . . . ,GJ) = β0 + XTβ +
J∑

j=1

ZT
j θj

This causes aliasing with the intercept (unidentifiable)

Usual fix: use contrasts (e.g., sum-to-zero coding)

With group lasso:

No aliasing concern due to ℓ2 penalties
Penalty enforces coefficients in a group to sum to zero
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Group-lasso and factors

Problem:

min
θ0,{θj}

1

2

N∑
i=1

(
yi − θ0 −

∑
j

zTij θj

)2
+ λ

∑
j

∥θj∥2.

If group j is a factor coded by dummies with
∑

k zij ,k = 1 for each i ,
then

at optimum 1⊤θj = 0

Proof idea: for any scalar c replace θ0 7→ θ0 + c , θj 7→ θj − c1. This
leaves residuals unchanged but changes the penalty. Choosing

c =
1⊤θj
pj

minimizes ∥θj − c1∥2 and forces the group coefficients to

sum to zero. So optimal θj must have zero sum.
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Multitask learning with group lasso

Multivariate response Y ∈ RN×K , predictor matrix X ∈ RN×p.

Matrix of coefficients Θ ∈ Rp×K with, matrix of errors E ∈ RN×K .

Y ∈ RK may be correlated, for example, taking Y as K movies
ratings of N users, then the ratings of different movies are correlated.

Goal: estimate Θ by minimizing the following objective function:

minimize
Θ∈Rp×K

1

2
∥Y − XΘ∥2F + λ

 p∑
j=1

∥∥θ′j∥∥2


where ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |

2. θ′j is the jth row of Θ, which

means the coefficients of the jth task.
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Multitask learning with group lasso

If we only use
∑p

j=1

∑K
k=1 |Θjk |, namely, ∥Θ∥1, then we have no way

of controlling group sparsity.∑p
j=1

∥∥∥θ′j∥∥∥
2
can do group sparsity because once the j th row is

actuated, all elements on the row are activated.
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Computation for group lasso

We ignore the intercept and rewrite the optimization problem as follows:

min
(θ1,...,θj)

1

2

∥∥∥∥∥∥y −
J∑

j=1

Zjθj

∥∥∥∥∥∥
2

2

+ λ

J∑
j=1

∥∥θj
∥∥
2

 .

By taking sub-derivative on the objective function and letting the
derivative to be zero, we have the following estimating equation:

−ZT
j

y −
J∑

j=1

Zj θ̂j

+ λŝj = 0,

where ŝj ∈ ∂∥θ̂j∥2 =

{
θ̂j

∥θj∥2 , if θ̂j ̸= 0,

any v s.t. ∥v∥2 ≤ 1, if θ̂j = 0.

90 / 126



Computation for group lasso

Denote rj = y −
∑

k ̸=j Zk θ̂k , then we have the estimating equation

−ZT
j

(
rj − Zj θ̂j

)
+ λŝj = 0.

By coordinate descent lemma, we have

θ̂j =


(

ZT
j Zj +

λ

∥θ̂j∥2

I
)−1

ZT
j rj , if ∥ZT

j rj∥2 ≥ λ,

0, otherwise.

This is not a closed form solution, one can use iterative methods to solve
the equation, or add some assumptions on Zj , for example, if Zj is
orthogonal, then the solution is closed form.
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Computation for group lasso

We have

θ̂j =

ZT
j Zj +

λ∥∥∥θ̂j∥∥∥
2

I

−1

ZT
j rj · I

(
∥ZT

j rj∥2 ≥ λ
)

Further assume that Zj is orthonormal, then ZT
j Zj = I , we have

θ̂j =

1− λ∥∥∥ZT
j rj
∥∥∥
2


+

ZT
j rj
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Computation for group lasso with dummy variables

For a factor with pj levels, the dummy matrix Zj has columns that are
level indicators.

Then
ZT
j Zj = diag(nj ,1, . . . , nj ,pj ),

where nj ,k = number of observations in level k.

Without normalization, groups with many observations produce larger
values of ∥ZT

j r∥2 and are more easily selected.

Normalization (ZT
j Zj = I ) ⇝ standardize dummy columns (divide by√

nj ,k)
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Sparse group lasso

When a group is included in a group-lasso fit, all the coefficients in
that group are nonzero.

We want sparsity both with respect to which groups are selected, and
which coefficients are nonzero within a group ⇝ variation of group
lasso, called sparse group lasso

An example for sparse group lasso

Although a biological pathway may be implicated in the progression of a
particular type of cancer, not all gene in the pathway need be active.
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Sparse group lasso

In order to achieve within-group sparsity, augment with additional
ℓ1-penalty, leading to the convex program:

minimize
{θj∈Rpj}J

j=1

1

2

∥∥∥∥∥∥y −
J∑

j=1

Zjθj

∥∥∥∥∥∥
2

2

+ λ

J∑
j=1

[
(1− α) ∥θj∥2 + α ∥θj∥1

] ,

where α ∈ [0, 1].

α = 0, reduces to the group lasso.

α = 1, reduces to the lasso.
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Sparse group lasso constraint region

Left unit ball can be characterized as
√
β2
1 + β2

2 + |β3| ≤ 1.

Right unit ball can be characterized as

(1− α)
√

β2
1 + β2

2 + α(|β1|+ |β2|) + (1− α)|β3|+ α|β3| ≤ 1.
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Overlap group lasso

Sometimes variables can belong to more than one group.

Genes can belong to more than one biological pathway

For example, we divide 5 variables into 2 groups,

Z1 = (X1,X2,X3), Z2 = (X3,X4,X5).

If we simply replicate variable X3, then use group lasso ⇝ X3 will be
selected to the model with higher probability
If we simply replicate parameter then use sparse group lasso ⇝ X3 will
be selected to the model only when both two groups are selected

So replicate variable is preferred.
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Overlap group lasso

νj ∈ Rp is a vector which is zero everywhere except in those positions
corresponding to member of the group j .

Vi ⊆ Rp subspace of possible vectors.

For X = (X1, . . . ,Xp) the coefficient vector is given by β =
∑J

j=1 νj
The overlap group lasso solves the problem:

minimizeνj∈Vj ,j=1,...,J

1

2

∥∥∥∥∥∥y − X

 J∑
j=1

νj

∥∥∥∥∥∥
2

2

+ λ

J∑
j=1

∥νj∥2


Jacob et al., (2009) showed that, the equivalent optimization problem
can be put in the form:

minimize
β∈Rp

{
1

2
∥y − Xβ∥22 + λΩV(β)

}
, ΩV(β) := inf

νj∈Vj

β=
∑J

j=1 νj

J∑
j=1

∥νj∥2
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Basis functions

Suppose for the moment that we have just a single feature X and we
are interested in estimating E(Y | X ) = f (X )

A common approach for extending the linear model f (X ) = Xβ is to
augment X with additional, known functions of X :

f (X ) =
M∑

m=1

βmhm(X ),

where the {hm} are called basis functions

Because the basis functions {hm} are prespecified and the model is
linear in the new variables, ordinary least squares approaches can be
used (at least in low-dimensional settings)
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Basis functions

Polynomial regression

Not only does this introduce bias, but it also results in extremely high
variance near the edges of the range of x
Runge’s phenomenon

local basis functions, which ensure that a given observation affects
only the nearby fit, not the fit of the entire line⇝ splines

Cubic splines
Natural cubic splines
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Additive models

Additive models

Additive models are based on approximating the regression function by
sums of the form:

f (x) = f (x1, . . . , xJ) ≈
J∑

j=1

fj (xj) , fj ∈ Fj , j = 1, . . . , J

Fj are fixes set of univariate function classes

Each Fj assumed to be a subset of L2 (Pj)

Pj is the distribution of covariate Xj equipped with squared L2 (Pj)
norm

∥fj∥22 := E
[
f 2j (Xj)

]
Some theoretical results need F to be the Sobelev class of functions
on [a, b]. (Buhlmann and van de Geer, 2010)
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Additive models

Best additive approximation to regression function E(Y | X = x) solves
problem:

minimize
fj∈Fj j=1,...,J

E

Y −
J∑

j=1

fj (Xj)

2 ,Fj ⊆ L2 (Pj) , j = 1, . . . , J

The optimal solution
(
f̃1, . . . , f̃J

)
is characterized by the backfitting

equations:

f̃j (xj) = E

Y −
∑
k ̸=j

f̃k (Xk) | Xj = xj

 , for j = 1, . . . , J

or f̃j = Pj(Y −
∑

k ̸=j f̃k(Xk))
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Partial Residuals and Backfitting for Linear Models

The general form of a linear regression model is

E[Y | X⃗ = x⃗ ] = β0 + β⃗ · x⃗ =

p∑
j=0

βjxj

Suppose we don’t condition on all of X⃗ but just one component of it, say
Xk . What is the conditional expectation of Y ?

E [Y | Xk = xk ] = E [E [Y | X1,X2, . . .Xk , . . .Xp] | Xk = xk ]

= E

 p∑
j=0

βjXj | Xk = xk


= βkxk + E

∑
j ̸=k

βjXj | Xk = xk


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Partial Residuals and Backfitting for LM/GAMs

Rearranging gives

βkxk = E [Y | Xk = xk ]− E

∑
j ̸=k

βjXj | Xk = xk


= E

Y −

∑
j ̸=k

βjXj

 | Xk = xk


The expression in the expectation is the kth partial residual. Let’s
introduce a symbol for this, say Y (k).

βkxk = E
[
Y (k) | Xk = xk

]
⇝ Gauss-Seidel type of algorithm for fitting linear models.
“a popular version of coordinate descent is known as backfitting and is
used to fit generalized additive models”
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Sparse additive models (SPAM)

For λ ≥ 0 type of k best sparse approximation:

minimize
fj∈Fj=1,...,J

|S|=k

E

Y −
∑
j∈S

fj (Xj)

2
where S ⊂ {1, . . . , J}⇝ 0-norm constraint on the number of nonzero
components

SPAM combines ideas from sparse linear modeling and additive
nonparametric regression

minimize
fj∈Fj=1,...,J

E

(Y −
J∑

j=1

fj (Xj)

)2
+ λ

J∑
j=1

∥fj∥2

 , ∥f ∥2 =
√

E [f 2 (Xj)]

This idea was originally proposed by Ravikumar et al. (2009)
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COSSO

COSSO method uses combination of the ℓ1-norm with the Hilbert
norm:

∥f ∥H,1 :=
J∑

j=1

∥fj∥H

COSSO’s objective function is given by

min
fj∈Hj j=1,...,J

 1

N

N∑
i=1

yi −
J∑

j=1

fj (xij)

2

+ λH

J∑
j=1

∥fj∥Hj


By Pythagorean theorem, the j th coordinate function f̂j in any
optimal COSSO solution can be written in the form
f̂j(·) =

∑N
i=1 θ̂ijRj (·, xij), for a suitably chosen weight vector

θ̂j ∈ RN ⇝ dimension reduction

Gram matrix Rj ∈ RN×N with entries (Rj)ii ′ = Rj

(
xij , xi ′j

)
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COSSO with RKHS

Let Hj = span{Rj (·, xij) , i = 1, . . . ,N}, we have

∥f̂j∥2Hj
=

〈
N∑
i=1

θ̂ijRj (·, xij) ,
N∑

i ′=1

θ̂i ′jRj

(
·, xi ′j

)〉

=
N∑
i=1

N∑
i ′=1

θ̂ij θ̂i ′jRj

(
xij , xi ′j

)
= θ̂T

j Rj θ̂j

The COSSO optimization problem can be written as

minimizeθj∈RN ,j=1,...,J

 1

N

∥∥∥∥∥∥y −
J∑

j=1

Rjθj

∥∥∥∥∥∥
2

2

+ τ

J∑
j=1

√
θT
j Rjθj


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Computational techniques for COSSO

Introducing γ ∈ RJ , an equivalent formulation of COSSO is

min
fj∈Hj ,j=1,...J

γ≥0

 1

N

N∑
i=1

yi −
J∑

j=1

fj (xij)

2

+
J∑

j=1

1

γj
∥fj∥2Hj

+ λ

J∑
j=1

γj


if we set λ = τ2/4⇝ equivalent to original COSSO formulation

alternates between two steps

1 For γj fixed, the problem results in an additive-spline fit

2 With the fitted additive spline fixed, updating the vector of
coefficients γ = (γ1, . . . , γJ) amounts to a nonnegative lasso problem.
gj := Rjθj/γj ∈ RN , where fj = Rjθj

min
γ≥0

{
1

N
∥y − Gγ∥22 + λ∥γ∥1

}
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Multiple Penalization

Multiple ways of enforcing sparsity for a nonparametric problem.
(SPAM backfitting, COSSO).

SPAM backfitting base on a combination of ℓ1-norm:
∥f ∥N,1 :=

∑J
j=1 ∥fj∥N with ∥fj∥2N := 1

N

∑J
j=1 f

2
j (xij)

COSSO method uses combination of the ℓ1-norm with the Hilbert
norm:

∥f ∥H,1 :=
J∑

j=1

∥fj∥H

Instead of focusing on only one regularizer, one might consider the more
general family of estimators

min
fj∈Hj

j=1,...,J

 1

N

N∑
i=1

yi −
J∑

j=1

fj (xij)

2

+ λH

J∑
j=1

∥fj∥Hj
+ λN

J∑
j=1

∥fj∥N


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Why Multiple Penalization?

Two Penalties in Sparse Additive Models

L(f ) = 1
2n

n∑
i=1

(
yi − ȳ − f (xi )

)2
+ λn∥f ∥n,1 + ρn∥f ∥H,1

∥f ∥n,1 =
∑d

j=1 ∥fj∥L2(n)

Encourages sparsity: many fj are set to zero.
Controls model selection when d ≫ n.

∥f ∥H,1 =
∑d

j=1 ∥fj∥Hj

Encourages smoothness: prevents overfitting in each fj .
Controls function complexity via RKHS norms.
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Impact of Each Penalty

Impact of Each Penalty

Only sparsity penalty: selects variables but risks wiggly, overfit
functions.

Only smoothness penalty: yields smooth fits but many irrelevant fj
remain nonzero.

Both penalties: balance variable selection & smooth estimation,
yielding minimax-optimal rates.
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Fused lasso

The fused LASSO (signal approximator) solves the problem

minimize
θ∈Rn

{
n∑

i=1

(Yi − θi )
2 + λ1

n∑
i=1

|θi |+ λ2

n∑
i=2

|θi − θi−1|

}
.

More generally one can use the penalty

λ2

∑
i∼j

|θi − θj | ,

where ∼ is a relation depending on the problem at hand.

Fused term :
∑n

i=2 |θi − θi−1|⇝ encourages neighboring coefficients
θi to be similar

Lasso term :
∑n

i=1 |θi |⇝ encourages sparsity in the coefficients θi
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Variation of fused lasso

Consider the Fused LASSO with a constant term θ0, which means:

min
θ0,θ

L (θ0, θ) ≜ min
θ0,θ

1

2

n∑
i=1

(yi − θ0 − θi )
2 + λ1

n∑
i=1

|θi |+ λ2

n∑
i=2

|θi − θi−1| ,

Then we can get θ̂0 by directly differentiate L by θ0, get:

θ̂0 =
1

N

N∑
i=1

yi −
1

N

N∑
i=1

θ̂i .
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Variation of fused lasso (cont’d)

We conclude that
Median (θi , 1 ≤ i ≤ N) = 0.

Since if Median (θi , 1 ≤ i ≤ N) = m ̸= 0, we can change all of the θi to
θi −m, 1 ≤ i ≤ N and change θ0 to θ0 +m, making the median to 0 and
get:

L (θ0 +m, θ −m · 1)

=
N∑
i=1

(yi − (θ0 +m)− (θi −m))2 + λ1

N∑
i=1

|θi −m|+ λ2

N∑
i=2

|θi − θi−1| ,

which makes the loss function smaller.
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Variation of fused lasso (cont’d)

Consider the Fused LASSO with a more general type:

min
β0,β

1

2

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|

 .

We have β̂0 satisfies:

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

 = 0 ⇒ β̂0 =
1

N

N∑
i=1

yi −
1

N

N∑
i=1

p∑
j=1

xijβj ,

if xij and yi are centered then

β̂0 = ȳ −
p∑

j=1

x̄·jβj = 0− 0 = 0

we can actually omit β0, independent with the choice of βi , 1 ≤ i ≤ p.
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Computational techniques for fused lasso

Lemmas for fused lasso

1 θ̂i (λ1, λ2) = Sλ1

(
θ̂i (0, λ2)

)
for each i = 1, . . . ,N.

2 Suppose that for some value of λ and some index i ∈ {1, . . . ,N − 1},
the optimal solution satisfies θ̂i (λ) = θ̂i+1(λ). Then for all λ′ > λ, we
also have θ̂i (λ

′) = θ̂i+1 (λ
′).

Hence we can focus on the optimization problem:

minimize
θ∈RN

{
1

2

N∑
i=1

(yi − θi )
2 + λ

N∑
i=2

|θi − θi−1|

}
.

reparametrize

start from λ = 0 and increase λ until all θi are fused

use lagrangian duality to solve the problem
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Case study: total variation denoising

The idea here is that there exists a “true” image, but we only see a
noisy image, from which we would like to recover the true image.
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Trend Filtering

The fused LASSO is a special case of trend filtering, which fits piecewise
polynomials to data. The idea is to minimize a criterion of the form

β̂ = argmin
β

1

2

n∑
i=1

(yi − βi )
2 + λ

∥∥∥D(k+1)β
∥∥∥
1

where D(k+1) is the (k + 1) th order difference operator.
Specifically, the second difference operator is given by

D(2) =


−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
...

0 0 · · · −1 2 −1


And the loss function is

β̂ = argmin
β

1

2

n∑
i=1

(yi − βi )
2 + λ

n−2∑
i=1

|βi − 2βi+1 + βi+2|
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Change Point Detection

The penalty is assumed that the observations occur at evenly spaced
points. For arbitrary input points x1 < x2 < · · · < xn, we can also use the
following penalty 1 :

1

2

N∑
i=1

(yi − θi )
2 + λ

n−2∑
i=1

∣∣∣∣θi − θi+1

xi − xi+1
− θi+1 − θi+2

xi+1 − xi+2

∣∣∣∣
It encourages the slopes of the adjacent linear segments is the same,
leading to piecewise linear fits.

Here xi stands for the time stamp/input feature of observation yi .

1Tibshirani, R.J. (2014). Adaptive piecewise polynomial estimation via trend
filtering. Annals of Statistics, 42(1), 285-323.
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Isotonic regression

Classical isotonic regression problem is to fit a nondecreasing
sequence to a given sequence of observations (y1, . . . , yN) by solving
the optimization problem

minimize
θ∈RN

{
N∑
i=1

(yi − θi )
2

}
subject to θ1 ≤ θ2 ≤ . . . ≤ θN

Nearly isotonic regression is a natural relaxation, in which we
introduce a regularization parameter λ ≥ 0, and instead solve the
penalized problem

minimize
θ∈RN

{
1

2

N∑
i=1

(yi − θi )
2 + λ

N−1∑
i=1

(θi − θi+1)+

}
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Case study: global warming
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SCAD

A variety of nonconvex penalties have been proposed: one of the
earliest and most influential was the smoothly clipped absolute
deviations (SCAD) penalty:

Pλ,γ(θ) =


λ|θ| if |θ| ≤ λ
2γλ|θ|−θ2−λ2

2(γ−1) if λ < |θ| < γλ
λ2(γ+1)

2 if |θ| ≥ γλ

for γ > 2

Note that SCAD coincides with the lasso until |θ| = λ, then smoothly
transitions to a quadratic function until |θ| = γλ, after which it
remains constant for all |θ| > γλ
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MCP

The MC+ penalty on each coordinate is defined by

Pλ,γ(θ) :=

∫ |θ|

0

(
1− x

λγ

)
+

dx =

{
|θ| − |θ|2

2λγ , |θ| < λγ,
λγ
2 , |θ| ≥ λγ.

For squared-error loss we pose the (nonconvex) optimization problem

minimize
β∈Rp

1

2
∥y − Xβ∥22 +

p∑
j=1

Pλ,γ (βj)

 ,
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SCAD, MCP and lasso in 1 dimension
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Questions or comments?
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