模拟数据
rm(list = ls())
set.seed(123) # 保证结果可复现
n <- 100 # 样本数量
mu_true <- 5 # 真实均值
sigma_true <- 2 # 真实标准差
# 生成正态分布样本数据
data <- rnorm(n, mean = mu_true, sd = sigma_true)
精确解
mean(data)
## [1] 5.180812
var(data) * (n - 1) / n
## [1] 3.299602
# Newton
# 定义一阶、二阶导数的函数 gradient() 和 hessian()
# 输入的theta是一个二维向量
l <- function(theta, x) {
return(
-1/(2*theta[2]) * sum((x-theta[1])^2) - length(x) / 2 * log(theta[2]) - length(x)/2*log(2*pi)
)
}
gradient <- function(theta, x) {
return(c(1/theta[2] *sum(x - theta[1]),
1/theta[2]^2*sum((x-theta[1])^2) -length(x)/theta[2]
))
}
hessian <- function(theta, x) {
return(matrix(
-c(
length(x)/theta[2],
1/theta[2]^2 * sum(x-theta[1]),
1/theta[2]^2 * sum(x-theta[1]),
1/theta[2]^3 * sum((x-theta[1])^2) - length(x)/(2*theta[2]^2)
),
nrow = 2,
byrow = TRUE
))
}
information <- function(theta, x) {
return(matrix(
-c(
length(x)/theta[2],
0,
0,
length(x)/(2*theta[2]^2)
),
nrow = 2,
byrow = TRUE
))
}
根据题目中的数据, 用Newton迭代法:
# 定义牛顿迭代法所需的初始值 theta0,tolerance 和最大迭代次数 max_iter
theta0 <- c(4, 2)
# theta <- c()
tolerance <- 1e-5
max_iter <- 1000
# 试验结果
# 迭代求解
iter <- 0
seq_newton <- c()
learning_rate <- 0.5
while (iter < max_iter) {
# 计算当前迭代点的梯度和Hessian矩阵
g <- gradient(theta = theta0, x = data)
H <- hessian(theta = theta0, x = data)
# 更新迭代点
theta <- theta0 - solve(H, g)*learning_rate
iter <- iter + 1
seq_newton <- c(seq_newton, abs(l(theta0, data) - l(theta, data)))
# 判断是否满足停止准则
if (abs(l(theta0, data) - l(theta, data)) < tolerance) {
break
}
# if (norm(as.matrix(gradient(theta0, n_trial) - gradient(theta, n_trial))) < tolerance) {
# break
# }
# 更新迭代点
theta0 <- theta
}
# 输出结果
if (iter == max_iter) {
paste0("Maximum iterations reached. Solution may not be accurate.")
} else {
paste0("Solution found: theta_1 = ", theta[1], "; theta_2 = ", theta[2], ". With ", iter," iterations.")
}
## [1] "Solution found: theta_1 = 5.18044920799126; theta_2 = 3.29960200758313. With 13 iterations."
得分法
theta0 <- c(4, 2)
# theta <- c()
tolerance <- 1e-5
max_iter <- 1000
# 试验结果
# 迭代求解
iter <- 0
seq_score <- c()
learning_rate <- 0.5
while (iter < max_iter) {
# 计算当前迭代点的梯度和Hessian矩阵
g <- gradient(theta = theta0, x = data)
I <- information(theta = theta0, x = data)
# 更新迭代点
theta <- theta0 - solve(I, g) * learning_rate
iter <- iter + 1
seq_score <- c(seq_score, abs(l(theta0, data) - l(theta, data)))
# 判断是否满足停止准则
if (abs(l(theta0, data) - l(theta, data)) < tolerance) {
break
}
# if (norm(as.matrix(gradient(theta0, n_trial) - gradient(theta, n_trial))) < tolerance) {
# break
# }
# 更新迭代点
theta0 <- theta
}
# 输出结果
if (iter == max_iter) {
paste0("Maximum iterations reached. Solution may not be accurate.")
} else {
paste0("Solution found: theta_1 = ", theta[1], "; theta_2 = ", theta[2], ". With ", iter," iterations.")
}
## [1] "Solution found: theta_1 = 5.18052353313734; theta_2 = 3.2996023400141. With 12 iterations."
比较
# 比较收敛速度
plot(seq_newton, type = "l", lwd = 2, col = "red", xlab = "Iteration", ylab = "|l(new) - l(old)|")
lines(seq_score, type = "l", lwd = 2, col = "blue")
abline(h = tolerance, lty = "dashed")
legend("topright", legend = c("Newton", "Score"), lwd = 2, col = c("red", "blue"))